[1]潘红波, 阎军, 刘永刚,等. 热处理工艺对TRIP钢组织与力学性能的影响[J]. 金属热处理, 2016, 41(1):101-105.
Pan H B, Yan J, Liu Y G, et al. Effect of heat treatment on microstructure and mechanical properties of TRIP steel[J].Heat Treatment of Metals, 2016, 41(1):101-105.
[2]张连腾, 陈乐平,徐勇,等.Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J].材料工程,2021,49(2):88-96.
Zhang L T,Chen L P,Xu Y, et al. Hot deformation behavior and constitutive equation of Mg-9Al-3Si-0.375Sr-0.78Y alloy[J]. Journal of Materials Engineering, 2021, 49(2):88-96.
[3]周亚利, 杨秋月,张文玮,等.具有层片状α相组织的TB8钛合金热变形行为及本构方程[J].材料工程,2021,49(1):75-81.
Zhou Y L, Yang Q Y, Zhang W W, et al. Hot deformation behavior and constitutive equation of TB8 titanium alloy with a lamellar structure of α phase[J]. Journal of Materials Engineering, 2021,49(1):75-81.
[4]赵宇, 徐月,张秀芝. 铸态30Cr2Ni4MoV转子钢基于应变补偿法的高温本构模型[J].锻压技术,2020,45(11):193-198.
Zhao Y,Xu Y,Zhang X Z. High temperature constitutive model on as-cast rotor steel 30Cr2Ni4MoV based on strain compensation method[J]. Forging & Stamping Technology, 2020,45(11):193-198.
[5]王欣, 葛学元,王淼辉, 等.S390粉末高速钢高温变形流动应力行为与预测[J].锻压技术,2021,46(1):154-163.
Wang X, Ge X Y, Wang M H, et al. Flow stress behavior and prediction of S390 powder metallurgy high speed steel at high temperature deformation[J]. Forging & Stamping Technology, 2021, 46(1):154-163.
[6]任劲宇, 陈飞,张晓峰, 等.铸态ER8车轮钢的热变形行为及本构模型研究[J].锻压技术,2021,46(1):202-207.
Ren J Y, Chen F, Zhang X F, et al. Study on hot deformation behavior and constitutive model of as-cast ER8 wheel steel[J]. Forging & Stamping Technology, 2021,46(1):202-207.
[7]孔晓寒, 陈慧琴,刘建生, 等. 铸态Q345E钢的本构方程及动态再结晶行为[J].锻压技术,2020,45(11):199-204.
Kong X H, Chen H Q, Liu J S, et al. Constitutive equation and dynamic recrystallization behavior for as-cast Q345E steel[J]. Forging & Stamping Technology, 2020, 45(11):199-204.
[8]张勇, 李鑫旭,韦康,等.850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J].金属学报,2020,56(10):1401-1410.
Zhang Y, Li X X, Wei K, et al. Hot deformation characteristics of novel wrought superalloy GH4975 extruded rod used for 850 ℃ turbine disc[J]. Acta Metallurgica Sinica, 2020,56(10):1401-1410.
[9]赵嫚嫚, 秦森,冯捷,等.Al、Ni对1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J].金属学报,2020,56(7):960-968.
Zhao M M, Qin S, Feng J, et al. Effect of Al and Ni on hot deformation behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB steel[J]. Acta Metallurgica Sinica, 2020, 56(7): 960-968.
[10]苏煜森, 杨银辉,曹建春,等.节Ni型2101双相不锈钢的高温热加工行为研究[J].金属学报,2018,54(4):485-493.
Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101[J]. Acta Metallurgica Sinica, 2018,54(4):485-493.
[11]Cabrera J M, Al Omar A, Prado J M, et al. Modeling the flow behavior of a medium carbon microalloyed steel under hot working conditions[J]. Metallurgical & Materials Transactions A, 1997, 28(11): 2233-2244.
[12]Cabrera J M, Ponce J, Prado J M. Modeling thermomechanical processing of austenite[J]. Journal of Materials Processing Technology, 2003, 143-144: 403-409.
[13]Cabrera J M, Jonas J J, Prado J M. Flow behaviour of medium carbon microalloyed steel under hot working conditions[J]. Materials Science and Technology, 1996, 12(7): 579-585.
[14]Mirzadeh H, Cabrera J M, Najafizadeh A. Constitutive relationships for hot deformation of austenite[J]. Acta Materialia, 2011, 59(16): 6441-6448.
[15]El Wahabi M, Cabrera J M, Prado J M. Hot working of two AISI 304 steels: A comparative study[J]. Materials Science and Engineering: A, 2003, 343(1-2): 116-125.
[16]Frost H J, Ashby M F.Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics[M]. Oxford: Pergamon Press, 1982.
[17]魏海莲, 刘国权, 肖翔,等. 表观的和基于物理的35Mn2钢奥氏体热变形本构分析[J].金属学报, 2013, 49(6):731-738.
Wei H L, Liu G Q, Xiao X, et al. Apparent and physically based constitutive analyses for hot deformation of austenite in 35Mn2 steel[J]. Acta Metallurgica Sinica, 2013, 49(6):731-738.
[18]El-Atya A A, Xu Y, Ha S, et al. Computational homogenization of tensile deformation behaviors of a third generation Al-Li alloy 2060-T8 using crystal plasticity fifinite element method[J]. Materials Science and Engineering: A, 2018, 731(25): 583-594.
|