Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal deformation behavior and phenomenological constitutive model for GH3128 alloy
Authors: Yang Bo  Wu Shihao  Bao Zhennan  Yuan Baohui  Zheng Kailun 
Unit: AECC Shenyang Liming Aero-engine Corporation Ltd. Dalian University of Technology 
KeyWords: Ni-based superalloy  tensile test  thermal deformation  phenomenological constitutive model  microstructure 
ClassificationCode:TH142.2
year,vol(issue):pagenumber:2022,47(5):226-234
Abstract:

The deformation behavior and microstructure evolution law of GH3128 alloy at different temperatures were investigated by room temperature and high temperature tensile tests, respectively, and it was found that the material still had good hardening ability and uniform deformation under the temperature of 1050 ℃ and the strain rate of 1 s-1. Then, two sets of phenomenological constitutive models of GH3128 alloy at room temperature and high temperature were constructed. The room temperature models included Ludwik model, Ludwik simple modified model and Ramberg-Osgood model, and the high temperature models included Fields-Backofen (FB) model and Johnson-Cook (JC) model. The rheological behavior of GH3128 alloy under different temperatures and strain rates was predicted by the built models. The results show that for the room temperature model, Ludwik simple modified model exhibits the highest prediction accuracy, and the absolute values of average error AARE is 3.64%. For the high temperature model, the prediction accuracy of both FB and JC models are limited because the phenomenological constitutive models cannot describe the complex microstructure evolution of GH3128 alloy. Thus, the study on the thermal deformation behavior and phenomenological constitutive model of GH3128 alloy provides effective guidance for the subsequent selection of hot forming process parameters and finite element simulation.

Funds:
AuthorIntro:
作者简介:杨 波(1988-),男,硕士,工程师,E-mail:Yangbo19880426@163.com;通信作者:郑凯伦(1988-),男,博士,教授,E-mail:zhengkailun@dlut.edu.cn
Reference:

[1]滕庆, 孙闪闪, 薛鹏举,. 激光选区熔化/热等静压复合成形Inconel 718组织与性能研究[J]. 航空制造技术, 2020, 63(13):53-60.


Teng Q, Sun S S, Xue P J, et al. Study on microstructure and properties of Inconel 718 fabricated byselective laser melting/hot isostatic pressing hybrid forming process[J]. Aviation Manufacturing Technology, 2020, 63 (13):53-60.


[2]蔺永诚, 陈小敏, 陈明松. 镍基合金的热变形行为及智能热加工技术研究进展[J]. 精密成形工程, 2021, 13(1):1-18.


Lin Y C, Chen X M, Chen M S.Recent development of high-temperature deformation behavior and intelligent processing of Ni-based superalloy[J].Journal of Netshape Forming Engineering, 2021, 13 (1): 1-18.


[3]黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2000.


Huang Q YLi H K. Superalloys [M]. Beijing: Metallurgical Industry Press, 2000.


[4]张成祥.典型航空发动机钣金件成形工艺研究[D].南京:南京航空航天大学,2016.


Zhang C X. Research on Forming Process of Typical Sheet Metal Parts in Aviation Engine [D]. NanjingNanjing University of Aeronautics and Astronautics, 2016.


[5]王辰淏. 薄壁管高气压热成形技术与工艺研究[D]. 沈阳:东北大学, 2014.


Wang C H. Research on High Pressure Hot Gas Forming Technology for Thin-wall Tube[D].ShenyangNortheastern University, 2014.


[6]Zhang H B, Qin S X, Li H Pet al. EBSD study of strain dependent microstructure evolution during hot deformation of a typical nickel-based superalloy[J]. Journal of Materials Research, 2018342):1-14.


[7]Zhao X,Zhou Y,Yuan K.Research on tensile properties of Ni-based super alloy GH3128[A].The Proceedings of 24th International Conference on Nuclear Engineering[C]. Charlotte, 2016.


[8]刘庭耀,赖宇,付建辉,.GH3128合金的高温流变行为与组织演变规律[J].金属热处理,2020,45(6):141-148.


Liu T Y, Lai Y, Fu J H, et al. High temperature rheological behavior and microstructure evolution of GH3128 alloy [J]. Heat Treatment of Metals, 2020,45(6):141-148.


[9]吴常钧,金哲学.长期时效和晶粒度对GH333GH128合金热疲劳的影响[J].钢铁研究学报,1986,6(2):33-41.


Wu C J, Jin Z X. Influence of long-term aging and grain size on thermal fatigue property of GH333 and GH128 alloys [J]. Journal of Iron and Steel Research, 1986,6 (2):33-41.


[10]张凯锋,吴德忠,陈国清,.镍基高温合金超塑性成形工艺研究[A].全球华人先进塑性加工技术研讨会论文集[C].北京: 2002.


Zhang K F, Wu D Z, Chen G Q,et al. Study on superplastic forming process of nickel-based superalloy [A].The Proceedings of the Global Chinese Symposium on Advanced Plastic Processing Technology [C]. Beijing:2002.


[11]刘继强,李茂盛,贾新朝,.高精度高温合金薄壁管旋压成形[J].宇航材料工艺,1999,29(6):51-53.


Liu J Q, Li M S, Jia X C,et al. The spinning of high-quality superalloy thin-wall tube [J]. Aerospace Materials and Technology, 1999,29 (6):51-53.


[12]中国金属学会高温合金材料分会.中国高温合金手册[M].北京:中国标准出版社,2012.


Superalloy Materials Branch of China Metal Society. China Superalloys Handbook [M]. Beijing: China Standards Press, 2012.


[13]ASTM E8/E8M—2011,Standard test methods for tension testing of metallic materials[S].


[14]王志彪. 2A12铝合金板材高温本构模型及拼焊板热态气压成形规律[D]. 哈尔滨:哈尔滨工业大学,2020.


Wang Z B. Constitutive Model of 2A12 Aluminum Alloy Sheet and Deformation Behavior of Tailor Welded Blanks in Hot Gas Forming [D]. Harbin: Harbin Institute of Technology, 2020.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com