Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal-structural coupling analysis and optimization on under-rank end picker for hub forging robot
Authors: Shen Yi1  Zhang Quanbing1  Qiu Beibei2  Zhang Bin2  Yuan Mingxin1 
Unit: School of Mechanics and Power Engineering  Jiangsu  University of Science and Technology 2. Lianyungang Jerry Automation Co.  Ltd. 
KeyWords: hub forging  under-rank end picker  thermal-structural coupling  thermal insulation optimization  topology optimization 
ClassificationCode:TP242
year,vol(issue):pagenumber:2022,47(6):169-178
Abstract:

 In order to improve the effectiveness and load-bearing capacity of clamping for under-rank end picker of hub forging robot in high temperature environment, the thermal-structural coupling analysis and structural optimization of under-rank end picker were carried out. First, the thermal load and static load of under-rank end picker were coupled based on finite element theory, the thermal stress distribution and the stress and strain results of the key components for under-rank end picker under coupling force field were obtained. Then, according to the obtaimed thermal stress distribution nephogram, the thermal insulation optimization design and the thermal-structure coupling analysis of each finger joint for under-rank end picker were conducted. Finally, according to the equivalent stress results for thermal insulation structure, the topology structure optimization of under-rank end picker was conducted. The numerical analysis shows that compared with the structure before optimization, the temperatures at reference nodes of the first, middle and last knuckles for under-rank end picker after thermal insulation optimization are reduced by 33.78%, 50.42% and 35.31%, respectively, and the masses of the first, middle and last knuckles for under-rank end picker after topology optimization are reduced by 38.75%, 18.63% and 26.45%, respectively, which achieve the optimization objectives of high temperature resistance and lightweight for under-rank end picker of hub forging robot.

Funds:
国家重点研发计划“智能机器人”重点专项(2018 YFB1309100);江苏省科技成果转化专项资金项目(BA2019092)
AuthorIntro:
申燚(1976-),女,硕士,副教授 E-mail:shenyi76@163.com 通信作者:张全兵(1994-),男,硕士研究生 E-mail:zqbjust@qq.com
Reference:

 [1]刘仁明. 链轨节自动化锻造生产线平移夹爪的研制[J].煤矿机械,2020,41(4):41-43.


 


Liu R M. Development of translation clamping claw for chain link automatic forging production line[J].Coal Mine Machinery, 2020,41(4):41-43.


 


[2]Liu J F, Zhang P. Thermomechanical behavior analysis of motorized spindle based on a coupled model [J]. Mechancial Engineering, 2018, 10(1): 1-12.


 


[3]Subbarao R, Gupta S V. Thermal and structural analyses of an internal combustion engine piston with suitable different super alloys[J]. Materials Today: Proceedings, 2020, 22(4): 2950-2956.


 


[4]Kim Y, Sun J K. Design and thermostructural analysis of 2D exhaust nozzle with multiple composite layers[J]. Composite Structures,2020,254(15):252-263.


 


[5]吴卫东, 李杰,杨志新,. 采煤机截割部摇臂结构热固耦合及传动影响分析[J]. 煤矿机械, 2020,41(12): 73-74.


 


Wu W D, Li J, Yang Z X, et al. Analysis of thermomechanical coupling and transmission influence of rocker arm structure of shearer cytting part[J]. Coal Mine Machinery, 2020, 41(12): 73-74.


 


[6]李若愚, 王天宏. 薄板热力耦合的屈曲分析[J].应用数学和力学,2020,41(8):877-886.


 


Li R Y, Wang T H. Thermomechanical buckling analysis of thin plates[J]. Applied Mathematics and Mechanics, 2020,41(8):877-886.


 


[7]Kambampati S, Gray J S, Kim H A. Level set topology optimization of structures under stress and temperature constraints[J]. Computers & Structures, 2020,235(15):365-376.


 


[8]邓小雷, 盛泽枫, 张江林,. 基于不规则元胞的主轴温度-结构场耦合热拓扑优化设计方法[J]. 浙江大学学报:工学版, 2020,54(1):23-32.


 


Deng X L, Sheng Z F, Zhang J L, et al. Thermal topology optimization design method of spindle under temperaturestructure field coupling condition based on irregular cell[J]. Journal of Zhejiang University: Engineering Science, 2020, 54(1): 23-32.


 


[9]姚红红, 邹德宁,周雨晴,. 固溶温度对06Cr25Ni2奥氏体耐热钢微观组织和力学性能的影响[J].上海金属, 2017, 39(6):22-25.


 


Yao H H, Zou D N, Zhou Y Q, et al. Effect of solution temperature on microstructure and mechanical properties of 06Cr25Ni20 austenitic heatresistant steel[J] Shanghai Metals, 2017, 39(6):22-25.


 


[10]苟建平, 侯力,吴阳,.基于有限元法的变双曲圆弧齿线齿轮啮合刚度分析[J].机械传动,2020,44(10):104-110.


 


Gou J P, Hou L, Wu Y, et al. Analysis of meshing stiffness of variable hyperbolic arc gear based on finite element method[J]. Journal of Mechanical Transmission, 2020, 44(10): 104-110.


 


[11]徐德衍. 铁道车辆热铆连接的有限元分析[J]. 锻压技术,2020,45(2):118-128.


 


Xu D Y. Finite element analysis on hot riveting connection for railway vehicles [J]. Forging & Stamping Technology, 2020,45(2): 118-128.


 


[12]兰青, 刘俊. 轮毂锻造液压机垫板隔热保温结构优化[J]. 机械设计, 2020, 37(S1): 223-225.


 


Lan Q, Liu J. Heat insulation structure optimization of the pad of wheel hub forging hydraulic press[J]. Journal of Machine Design, 2020, 37(S1): 223-225.


 


[13]张同钢, 王优强,徐彩红,等.水润滑动静压陶瓷轴承的热弹流润滑分析[J].机械传动,2017,41(10):17-22.


 


Zhang T GWang Y Q Xu C H, et al. Analysis of the thermal elastohydrodynamic lubrication of waterlubricated hybrid ceramic bearing[J].Journal of Mechanical Transmission, 2017,41(10):17-22.


 


[14]侯庚, 张迎辉, 葛宰林,.大型矿用电铲推压减速器箱体拓扑优化及影响分析[J].机械传动,2018, 42(4):67-70.


 


Hou G, Zhang Y H, Ge Z L, et al. Topology optimization and impact analysis of crowd reducer box of large mining electric excavator[J].Journal of Mechanical Transmission201842(4):67-70.


 


[15]殷剑, 黎诚,金康,. 铝合金汽车前下摆臂成形工艺的有限元模拟与优化[J]. 锻压技术,2021,46(11):74-82.


 


Yin JLi CJin Ket al. Finite element simulation and optimization on forming process of automobile front lower sway arm for aluminum alloy[J]. Forging & Stamping Technology2021,46(11):74-82.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com