Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Trimming and restriking composite process for panorama sunroof panel and die design
Authors:  
Unit:  
KeyWords:  
ClassificationCode:U466;TG386
year,vol(issue):pagenumber:2022,47(7):112-121
Abstract:

 For an automobile panorama sunroof panel, through analyzing the manufacturability of the panorama sunroof panel product and the practicability of the die structure layout, the process content of each process was rationally planned, and the process integration of trimming and side restriking for gutter channel on both sides of the panorama sunroof panel, the process integration of trimming and side restriking for rear wing mounting surface on back side of the panorama sunroof panel, as well as the process integration of trimming and flanging for sunroof opening were realized. Therefore, the stamping die process for the panorama sunroof panel was shortened from four-process to three-process. Then, the two kinds of punch expansion wedge mechanism used to realize the three-process stamping die for the panorama sunroof panel were mainly expounded. Furthermore, a horizontal push-pull punch expansion wedge mechanism was designed in the gutter channel on the both sides of the panorama sunroof panel, and a vertical push-pull punch expansion wedge mechanism was designed on the rear wing mounting surface on back side of the panorama sunroof panel. The research shows that the combined application for two different types of wedge mechanisms can enable the panorama sunroof panel to complete more process content in the same process, realize the synchronization of trimming and side restriking for the three-sided negative angle structure, shorten the stamping die process, reduce the cost of stamping dies and improve the production efficiency of parts. 

Funds:
国家自然科学基金面上项目(51775397,51675392);国家重点研发计划资助项目(2019YFB1704502)
AuthorIntro:
作者简介:蒋磊(1987-),男,学士,工程师 E-mail:648213973@qq.com
Reference:

 [1]杨月, 赵锋,刘海东.顶盖外板全景天窗后角顶面弹性回复补偿方法研究[J].模具工业,2020,46(11):21-27.


Yang Y, Zhao F, Liu H D. Study on elastic recovery compensation method for roof panel on back sunroof[J].Die & Mould Industry,2020,46(11):21-27.

[2]蒋磊, 龚剑,王龙,等.翼子板试制冲压工艺与模具设计[J]. 锻压技术,2020,45(2):73-80.

Jiang L, Gong J, Wang L, et al. Trial stamping process and die design of fender[J].Forging & Stamping Technology, 2020,45(2):73-80.

[3]周铁军, 周厚保.汽车顶盖模具气动驱动成形技术的应用[J].模具制造,2018,(7):22-26.

Zhou T J, Zhou H B. The application for the pneumatic drive forming on automobile roof die [J]. Die & Mould Manufacture, 2018, (7):22-26.

[4]蒋磊, 王龙,王大鹏,等. 基于短工序化的侧围外板冲压工艺与模具设计[J].模具制造,2020,(5):15-23.

Jiang L, Gong J, Wang D P, et al. The stamping process and die design of body side outer panel based on short procedures[J]. Die & Mould Manufacture, 2020,(5):15-23.

[5]高双明, 矫阿娇,崔礼春. 某轿车后门内板冲压工艺及整形模具结构优化[J]. 锻压技术,2021,46(1):65-69.

Gao S M,Jiao A J,Cui L C. Stamping process and structure optimization of sizing die for inner panel of a car rear door [J]. Forging & Stamping Technology,2021,46(1):65-69.

[6]蒋磊, 龚剑,王龙,等. 侧围外板浅拉延成形工艺数值模拟[J].塑性工程学报,2020,27(9):73-81.

Jiang L, Gong J, Wang L, et al. Numerical simulation of body side outer panel based on shallow drawing[J]. Journal of Plastic Engineer, 2020,27(9):73-81.

[7]郎利辉, 巫永坤,陈杨锴,等. 铝合金汽车顶盖充液成形的数值模拟[J].精密成形工程,2017,9(3):13-18.

Lang L H, Wu Y K, Chen Y K, et al. Numerical investigation into the hydroforming of aluminum alloy automobile roof cover [J]. Journal of Netshape Forming Engineering, 2017, 9(3):13-18.

[8]蒋磊, 张雄飞,王龙,等. 基于变压边力的侧围外板成形研究[J].精密成形工程,2020,12(6):157-163.

Jiang L, Zhang X F, Wang L, et al. Research on forming of side outer panel based on variable blank holder force[J]. Journal of Netshape Forming Engineering, 2020, 12(6):157-163.

[9]周志伟, 龚红英,赵小云,等. 基于RSM与GA的汽车后备箱盖板成形工艺参数多目标优化[J]. 锻压技术,2021,46(3):75-81,95.

Zhou Z W,Gong H Y,Zhao X Y,et al. Multi-objective optimization on process parameters for automobile trunk cover based on RSM and GA [J]. Forging & Stamping Technology,2021,46(3):75-81,95.

[10]蒋磊, 龚剑,王龙,等.基于产品质量特性的冲压模具工序集成技术开发与应用[J].汽车工艺与材料,2019,(10):6-14.

Jiang L, Gong J, Wang L, et al. The development and application of stamping process integrated technology based on quality characteristics [J]. Automobile Technology & Material, 2019,(10):6-14.

[11]代丽, 朱勇. 汽车侧围外板表面缺陷分析及冲压工艺优化[J]. 锻压技术,2021,46(6):91-98.

Dai L,Zhu Y. Surface defect analysis and stamping process optimization on automobile side wall outer panel[J]. Forging & Stamping Technology,2021,46(6):91-98.

[12]刘龙芬. 汽车全景天窗顶盖切翻工艺与模具设计[J].模具工业,2017,43(2):33-37.

Liu L F. Trimming and flanging technology for panoramic skylight head cover of automobile and the die design [J]. Die & Mould Industry, 2017, 43(2):33-37.

[13]王建衡, 胥一勤.汽车全景天窗冲压工艺优化及模具设计[J].模具工业,2019,45(2):16-19.

Wang J H, Xu Y Q. Stamping process optimization of automotive panoramic sunroof and the die design[J]. Die & Mould Industry, 2019,45(2):16-19.

[14]刘莉,江波,王淑俊.某车型全景天窗顶盖外板修边工艺与模具设计[J].锻压装备与制造技术,2019,54(2):90-93.

Liu L, Jiang B, Wang S J. Trimming process and die design of the top cover outer panel of the panoramic sunroof of a certain model automobile [J]. China Metalforming Equipment & Manufacturing Technology, 2019,54(2):90-93.

[15]曹彪, 代建文.汽车顶盖表面凹陷问题的控制方法[J].模具工业,2020,46(9):66-69.

Cao B, Dai J W. Control measures for surface indentation issue on automobile roof panel[J]. Die & Mould Industry, 2020,46(9):66-69.

[16]肖敬伟. 轿车侧围外板局部褶皱的分析与解决[J]. 锻压技术,2021,46(12):92-99.

Xiao J W. Analysis and solution on local wrinkles for side frame outer panel of a car [J]. Forging & Stamping Technology,2021,46(12):92-99.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com