Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Finite element analysis on deformation behavior of Cu/Al/Cu clad sheet during asynchronous rolling
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG335.81
year,vol(issue):pagenumber:2022,47(7):175-183
Abstract:

 An elastic-plastic finite element model of asynchronous rolling for Cu/Al/Cu clad sheet was established by software ANSYS/LS-DYNA, and the accuracy of the finite element model was proved by comparing the simulation results of finite element model with the actual rolling experiment results. Then, through the analysis and study of asynchronous rolling deformation zone, it is found that under the same conditions, compared with synchronous rolling, the asynchronous rolling effectively reduces the rolling normal stress and increases the friction stress in the backward slip zone, and the cross-shear zone of asynchronous rolling promotes the metal flow at the bonding interface of clad sheet. Under the same conditions of other rolling, the larger the reduction rate is, the smaller the cross-shear zone is, the larger the asynchronous speed ratio is, and the larger the cross-shear zone is. The equivalent strain of the bonding interface copper sheet near the fast roll side is greater than that near the slow roll side, and the equivalent strain of the intermediate aluminum sheet is greater than that of copper sheets on both sides. With the increasing of asynchronous speed ratio, the equivalent strain difference between the two metals on the bonding interface of the clad sheet is gradually reduced, and the deformation becomes more coordinated, which is conducive to enhancing the bonding strength of the clad sheet. The research provides theoretical basis for the preparation process optimization of copper-aluminum clad sheet.

Funds:
国家重点研发计划项目(2018YFA0707300);国家自然科学基金资助项目(51904206,51974196)
AuthorIntro:
作者简介:王振华(1990-),男,博士,助理研究员 E-mail:wangzhenhua@tyut.edu.cn
Reference:

 [1]王涛, 齐艳阳,刘江林,等. 金属层合板轧制复合工艺国内外研究进展[J]. 哈尔滨工业大学学报,2020,52(6):48-62.


Wang T, Qi Y Y, Liu J L, et al. Research progress of metal laminates roll bonding process at home and abroad[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 48-62.

[2]徐涛. 金属层状复合材料的发展与应用[J]. 轻合金加工技术,2012,(6):7-10.

Xu T. Development and application of laminated-metal composite[J]. Light Alloy Fabrication Technology, 2012, (6): 7-10.

[3]田捍卫, 王爱琴,刘帅洋,等. 铜铝层状复合材料的研究进展[J]. 材料科学与工程学报,2019,37(1):168-173.

Tian H W, Wang A Q, Liu S Y, et al. Research progress on copper-aluminum laminated composites[J]. Journal of Materials Science and Engineering, 2019,37(1):168-173.

[4]张胜华, 郭祖军. 铜-铝复合材料的研究[J]. 中国有色金属学报,1995,5(4):128-132.

Zhang S H, Guo Z J. Study on copper-aluminum composites[J]. The Chinese Journal of Nonferrous Metals, 1995, 5(4): 128-132.

[5]刘腾, 刘平,王渠东. 铜铝双金属复合材料的研究进展[J]. 材料导报,2013,(19):4-8,25.

Liu T, Liu P, Wang Q D. Research progress on copper/aluminum bimetal composite[J]. Materials Reports, 2013, (19): 4-8, 25.

[6]刘国平, 王渠东,蒋海燕. 铜/铝双金属复合材料研究新进展[J]. 材料导报,2020,34(19):7115-7122.

Liu G P, Wang Q D, Jiang H Y. New research progress on copper/aluminum bimetallic composites[J]. Materials Reports, 2020, 34(19): 7115-7122.

[7]梅瑞斌, 史现利,包立,等.多道次热辊轧制Al/Mg层状复合板材结合面特性研究[J/OL].复合材料学报:1-14[2022-05-13].DOI:10.13801/j.cnki.fhclxb.20210902.006.

Mei R B, Shi X L, Bao L, et al. Interface characteristics study of Al/Mg laminated composite sheets by ulti-passes RHR[J/OL]. Acta Materiae Compositae Sinica:1-14[2022-05-13].DOI:10.13801/j.cnki.fhclxb.20210902.006.

[8]陈琦, 迟之东. 镁/铝复合板材制备工艺及性能研究[J]. 有色金属加工, 2015,44(1): 26-28.

Chen Q, Chi Z D. Study of preparation and properties of Mg/Al composite sheet[J]. Nonferrous Metals Processing, 2015,44(1): 26-28.

[9]田世伟, 江海涛,刘继雄,等. 钛钢复合板双金属的流变行为及轧制制备[J]. 材料导报,2019,33(24):4141-4146.

Tian S W, Jiang H T, Liu J X, et al. Rheological behavior and hot rolling process of titanium/steel clad plate[J]. Materials Reports, 2019, 33(24):4141-4146.

[10]余伟, 王班,贺婕,等. 多层金属复合板的热轧制备方法[J]. 材料工程,2017,45(2):32-38.

Yu W, Wang B, He J, et al. Hot-rolled process of multilayered composite metal plate[J]. Journal of Materials Engineering,2017, 45(2): 32-38.

[11]刘理. 铜/铝复合板轧制工艺与理论研究[D]. 沈阳:东北大学,2006.

Liu L. Research on Rolling Process and Theory of Cu/Al Rolling Clad Sheet[D]. Shenyang: Northeast University, 2006.

[12]黄宏军, 张泽伟,王书生,等. 铜铝薄板轧制复合工艺[J]. 沈阳工业大学学报,2009,(5):531-535.

Huang H J, Zhang Z W, Wang S S, et al. Roll cladding technology for copper-aluminum thin sheet[J]. Journal of Shenyang University of Technology, 2009, (5): 531-535.

[13]罗龙, 王宝峰,李丽荣. 铜/铝热轧扩散复合界面扩散的分子动力学模拟[J]. 热处理技术与装备,2011,32(2):55-60.

Luo L, Wang B F, Li L R. Molecular dynamics simulation of diffusion behavior at the interface of hot rolling diffusion bonding of Cu/Al[J]. Heat Treatment Technology and Equipment, 2011, 32(2): 55-60.

[14]王平, 刘静. 铜/铝冷轧复合薄带热处理工艺及界面组织和性能研究[J]. 稀有金属材料与工程,2014,43(9):2232-2236.

Wang P, Liu J. Heat Treatment technique and interface microstructure and property for cold-rolling copper-aluminum composite strip[J]. Rare Metal Materials and Engineering, 2014, 43(9): 2232-2236.

[15]常东旭, 王平,赵莹莹. 铜/铝异步轧制复合带的界面反应与强化机制[J]. 东北大学学报:自然科学版,2019,40(11):1574-1578.

Chang D X, Wang P, Zhao Y Y. Interfacial reaction and strengthening mechanism of Cu/Al composite strip produced by asymmetrical rolling[J]. Journal of Northeastern University: Natural Science, 2019, 40(11): 1574-1578.

[16]赵莹莹, 王泽宇,龚潇雨,等. 铜铝异步轧制复合工艺及组织性能[J]. 焊接学报,2016,(11):71-74.

Zhao Y Y, Wang Z Y, Gong X Y, et al. Microstructure and property of asymmetric rolled Cu/Al composites[J]. Transactions of the China Welding Institution, 2016, (11): 71-74.

[17]朱永伟, 谢刚朝. 层压金属复合材料的加工技术[J]. 矿冶工程,1998,18(2):68-72.

Zhu Y W, Xie G C. Processing technology of laminated metal composites[J]. Mining and Metallurgical Engineering, 1998, 18(2): 68-72.

[18]王跃林, 高翔宇,王涛,等. 冷轧铜/铝复合板横向界面结合强度研究[J]. 热加工工艺,2020,49(3):99-102.

Wang Y L, Gao X Y, Wang T, et al. Research on transverse interface bond strength of cold rolled copper/aluminum clad sheet[J]. Hot Working Technology, 2020, 49(3): 99-102.

[19]Szota P, Dyja H. Numerical modelling of the bimetallic reinforcement bar rolling process[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007, 25(1):130-136.

[20]Jeon C H, Han S W, Joo B D, et al. Deformation analysis for cold rolling of Al-Cu double layered sheet by physical modeling and finite element method[J]. Metals and Materials International, 2013, 19(5): 1069-1076.

[21]Randari M, Reihanian M, Baghal S M L. Microstructural control and layer continuity in deformation bonding of metallic laminated composites[J]. Materials Science and Engineering, 2018, 738(19): 98-110.

[22]黄福祥, 汪振,李司山. 压下量对Ag/Cu 复合材料轧制变形影响的模拟[J]. 重庆工学院学报,2009,23(5):129-135.

Huang F X, Wang Z, Li S S. Simulation on influence of percent reduction on rolling deformation of Ag/Cu composite[J]. Journal of Chongqing Institute of Technology, 2009, 23(5): 129-135.

[23]李世芸, 张曙红,张代明. 双金属复合带材轧制过程有限元模拟[J]. 中国有色金属学报,2001,11(6):1078-1082.

Li S Y, Zhang S H, Zhang D M. Finite element simulation of rolling process of bimetallic composite strip [J]. The Chinese Journal of Nonferrous Metals, 2001, 11(6): 1078-1082.

[24]孙铁铠, 刘恩来. 用弹塑性有限元模拟双金属复合板轧制[J]. 钢铁研究学报,2002,14(5):26-29.

Sun T K, Liu E L. Simulation of bimetal composite plate rolling by FEM[J]. Journal of Iron and Steel Research, 2002, 14(5): 26-29.

[25]祖国胤, 李小兵,丁明明,等. 异步轧制铜/铝双金属复合板变形行为的研究[J]. 东北大学学报:自然科学版,2011,32(5):675-678.

Zu G Y, Li X B, Ding M M, et al. Investigating deformation behavior of asymmetrically rolled Cu/Al bimetal clad sheets[J]. Journal of Northeastern University: Natural Science, 2011, 32(5): 675-678.

[26]何亚龙. 铜/铝双金属复合管连轧变形过程数值模拟[J]. 甘肃科技,2015,31(3):42-45.

He Y L. Numerical simulation of the continuous rolling deformation process of copper/aluminum bimetallic composite pipe[J]. Gansu Science and Technology, 2015, 31(3): 42-45.

[27]赵鸿金, 胡玉军,李涛涛,等. 工艺参数对连续挤压铜/铝复合接触线成形的数值模拟研究[J]. 材料科学与工艺,2015,23(1):95-100.

Zhao H J,Hu Y J,Li T T,et al. The numerical simulation of Cu /Al contact wire forming during continuous extrusion cladding process[J]. Materials Science & Technology, 2015, 23(1): 95-100.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com