Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Optimization on steering knuckle mold parameters based on Kriging model and multi-objective genetic algorithm
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG316
year,vol(issue):pagenumber:2022,47(7):213-219
Abstract:

 In order to solve the defects of insufficient filling, folding, too large forming load and poor surface forming quality of a steering knuckle after forming, an optimization strategy based on Kriging model, multi-objective genetic algorithm and numerical simulation technology was proposed. The punch draft angle, the fillet radius of long sheep horn side for punch head and the fillet radius of connection between rod and flange were selected as the design variables, and the unfilled distance at the end of rod and the maximum forming load of final forging were selected as the optimization objectives. Firstly, the experimental scheme was obtained by orthogonal experimental design method. Secondly, each group of experiments was simulated by Deform-3D, and the response data between design variables and optimization objectives was obtained. Thirdly, the mapping relationship between design variables and optimization objectives was approximated by Kriging model, and the approximate model was globally optimized by multi-objective genetic algorithm to obtain the frontier optimal solution set. Finally, the optimized parameters were simulated and verified in production. The results show that the simulation results and production results prove the effectiveness of the optimization strategy. Therefore, the products with good forming effect are obtained by the optimized mold parameters, and the material utilization rate is increased from 75% to 85%. 

Funds:
重庆自然科学基金资助项目(cstc2020jcyj-msxmX0940)
AuthorIntro:
作者简介:徐杰(1981-),男,硕士,副教授 E-mail:xujie6896@163.com
Reference:

 [1]王冬良, 陈南. 基于数值模拟的汽车转向节精密成形工艺[J]. 锻压技术, 2021, 46(11):38-43.


Wang D L, Chen N. Precision forming process for automobile steering knuckle based on numerical simulation[J]. Forging & Stamping Technology, 2021, 46(11):38-43.

[2]潘成海, 曾琦, 董旭刚, 等. 汽车转向节精锻工艺设计与锻造主机选型[J]. 锻压技术, 2021, 46(8):26-31.

Pan C H, Zeng Q, Dong X G, et al. Design on precision forging process of automobile steering knuckle and selection of forging main press[J]. Forging & Stamping Technology, 2021, 46(8):26-31.

[3]刘江, 徐皓. 基于Deform 3D的长杆类汽车转向节锻模设计及锻造工艺生产验证[J]. 锻压技术, 2021, 46(2):9-13.

Liu J, Xu H. Design on forging mold and production verification of forging process for automobile steering knuckle with long rod based on Deform 3D[J]. Forging & Stamping Technology, 2021, 46(2):9-13.

[4]徐皓, 刘江. 长城2020转向节锻模设计及其锻造工艺生产验证[J]. 锻压技术, 2021, 46(1):24-28.

Xu H, Liu J. Forging die design of Great Wall 2020 steering knuckle and production verification of its forging process[J]. Forging & Stamping Technology, 2021, 46(1):24-28.

[5]徐皓, 刘铭, 刘江. 基于Deform的依维柯汽车转向节的预锻优化[J]. 锻压技术, 2020, 45(1):30-34. 

Xu H, Liu M, Liu J. Pre-forging optimization on steering knuckle for IVEVO automobile based on Deform[J]. Forging & Stamping Technology, 2020, 45(1):30-34.

[6]徐皓, 刘江. JMC轻卡汽车转向节锻件设计及Deform数值模拟分析[J]. 锻压技术, 2020, 45(5):14-19.

Xu H, Liu J. Design on steering knuckle forgings for JMC truck and analysis on numerical simulation of Deform[J]. Forging & Stamping Technology, 2020, 45(5):14-19.

[7]代璐蔚. 非调质钢38MnVTi转向节热锻成形数值模拟及工艺优化[D]. 重庆:重庆理工大学, 2019.

Dai L W. Numerical Simulation and Process Optimization of Hot Forging Process for Steering Knuckle of 38MnVTi Nonquenched and Tempered Steel[D]. Chongqing: Chongqing University of Technology, 2019.

[8]张强, 刘阳. 基于Forge的汽车转向节模锻仿真分析[J]. 热加工工艺, 2020, 49(11):114-116,121.

Zhang Q, Liu Y. Simulation analysis of die forging of automobile steering joint based on Forge[J]. Hot Working Technology, 2020, 49(11):114-116, 121.

[9]齐羿. 汽车盘式转向节锻造工艺及成形过程数值模拟研究[D]. 济南:山东大学, 2021.

Qi Y. Research on Forging Process and Numerical Simulation of Forming Process of Automobile Disc Steering Knuckle[D]. Jinan: Shandong University, 2021.

[10]林磊, 周杰, 肖红. 农用车转向节闭式挤锻新工艺多目标优化[J]. 热加工工艺, 2014, 43(13):133-135.

Lin L, Zhou J, Xiao H. Multi-objective optimization of closed extrusion-forging new technology for agricultural vehicles steering knuckle[J]. Hot Working Technology, 2014, 43(13):133-135.

[11]Zhou J, Lin L, Luo Y. The multi-objective optimization design of a new closed extrusion forging technology for a steering knuckle with long rod and fork[J]. International Journal of Advanced Manufacturing Technology, 2014, 72(9-12):1219-1225.

[12]栾伟, 孙燕, 骆俊廷, 等. 42CrMo钢的本构关系与转向节臂成形工艺研究[J]. 塑性工程学报, 2016, 23(5):173-178.

Luan W, Sun Y, Luo J T, et al. Constitutive relationship of 42CrMo steel and forming technology of steering knuckle arm[J]. Journal of Plasticity Engineering, 2016, 23(5):173-178.

[13]付向辉, 张立刚, 李立, 等. 电絮凝除铊工艺的响应曲面优化[J].稀有金属,2020,44(5):530-539.

Fu X H, Zhang L G, Li L, et al.Optimization of electrocoagulation process for thallium removal from aqueous solutions by response surface methodology[J]. Chinese Journal of Rare Metals,2020,44(5):530-539.

[14]杨海, 周杰, 黄亮, 等. 基于数值模拟的转向节挤压工艺优化[J]. 热加工工艺, 2013, 42(1):72-74.

Yang H, Zhou J, Huang L, et al. Extrusion process optimization for steering knuckle based on numerical simulation[J]. Hot Working Technology, 2013, 42(1):72-74.

[15]林磊. 转向节闭式挤锻成形工艺研究[D]. 重庆:重庆大学, 2014.

Lin L. Research on the Closed Extrusion Forging Technology of a Steering Knuckle[D]. Chongqing:Chongqing University, 2014.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com