[1]Santos L, Borrego L P, Ferreira J, et al. Effect of heat treatment on the fatigue crack growth behaviour in additive manufactured AISI 18Ni300 steel[J]. Theoretical and Applied Fracture Mechanics, 2019, 102:10-15.
[2]陈帅, 刘建光, 王卫东, 等. 激光选区熔化成形薄壁件研究进展[J]. 精密成形工程, 2020, 12(5):122-131.
Chen S, Liu J G, Wang W D, et al. Research progress in thin-walled parts formed by selective laser melting[J]. Journal of Netshape Forming Engineering, 2020, 12(5):122-131.
[3]陈帅, 刘建光, 王卫东, 等. TiB2/AlSi10Mg激光选区熔化成形工艺研究[J]. 精密成形工程, 2021, 13(3):154-161.
Chen S, Liu J G, Wang W D, et al. Research on the selective laser melting process of TiB2/AlSi10Mg[J]. Journal of Netshape Forming Engineering, 2021, 13(3):154-161.
[4]尹航, 李金许, 宿彦京,等. 马氏体时效钢的强韧化设计[J]. 材料导报,2014, 28(13): 86-88.
Yin H, Li J X, Su Y J, et al. The toughening designing of maraging steel[J]. Materials Review, 2014, 28(13):86-88.
[5]Casalino G, Campanelli S L, Contuzzi N, et al. Experimental investigation and statistical optimization of the selective laser melting process of a maraging steel[J]. Optics & Laser Technology, 2015, 65:151-158.
[6]魏富涛, 许冠, 毛卫东,等. 18Ni300模具钢激光选区熔化工艺优化及力学性能研究[J]. 粉末冶金技术, 2019, 37(3):214-219.
Wei F T, Xu G, Mao W D, et al. Research on the process optimization of selective laser melting and the mechanical properties of 18Ni300 die steel[J]. Powder Metallurgy Technology, 2019, 37(3):214-219.
[7]张璐, 巩建强, 杜文强,等. 经SLM打印成型的18Ni300热处理研究[J]. 应用激光, 2019, 39(4):130-135.
Zhang L, Gong J Q, Du W Q, et al. Study on heat treatment of 18Ni300 formed by SLM printing[J]. Applied Laser, 2019, 39(4):130-135.
[8]赖莉, 徐震霖, 何宜柱. 热处理对SLM 18Ni300马氏体时效钢组织及腐蚀性能的影响[J]. 表面技术, 2019, 48(12):340-347.
Lai L, Xu Z L, He Y Z. Effect of heat treatment on microstructure and corrosion properties of SLM 18Ni300 maraging steel[J]. Surface Technology, 2019, 48(12):340-347.
[9]王云鹏, 孙琨, 杨思泽,等. 18Ni(300)钢高速干滑动摩擦磨损特性研究[J]. 摩擦学学报, 2017, 37(2):218-224.
Wang Y P, Sun K, Yang S Z, et al. Friction and wear characteristics of 18Ni(300) steel at high speed dry sliding condition[J]. Tribology, 2017, 37(2):218-224.
[10]汪飞雪, 张天翊, 刘鹏举,等. 基于SLM工艺的316L四棱锥点阵结构力学性能[J]. 塑性工程学报, 2021, 28(10):99-106.
Wang F X, Zhang T X, Liu P J, et al. Mechanical properties of 316L four pyramidal lattice structure based on SLM process[J]. Journal of Plasticity Engineering, 2021, 28(10):99-106.
[11]陈帅, 陶凤和, 贾长治. 选区激光熔化成型18Ni300钢显微组织与性能研究[J]. 铸造技术, 2019, 40(7):657-661.
Chen S, Tao F H, Jia C Z. Study on microstructure and properties of 18Ni300 steel fabricated by selective laser melting[J]. Foundry Technology, 2019, 40(7):657-661.
[12]Wang Y C, Li Y M, Yu H L, et al. In situ fabrication of bioceramic composite coatings by laser cladding[J].Surface & Coatings Technology, 2005, 200(7): 2080-2084.
[13]Jgle Eric A, Sheng Z D, Wu L, et al. Precipitation reactions in age-hardenable alloys during laser additive manufacturing[J]. JOM, 2016, 68(3): 943-949.
[14]金玉花, 金赟, 卢学天,等. 热处理对选区激光熔化18Ni300成形组织性能的影响[J]. 应用激光, 2019, 39(3):394-399.
Jin Y H, Jin Y, Lu X T, et al. Effect of heat treatment on microstructure and properties of 18Ni300 by selective laser melting[J]. Applied Laser, 2019, 39(3):394-399.
[15]Barrau O, Boher C, Gras R, et al. Analysis of the friction and wear behavior of hot work tool steel for forging[J]. Wear, 2003, 255:1444-1454.
[16]Boubechou C, Bouchoucha A, Zaidi H, et al. Thermal andtribological analysis of the dry sliding steel-steel couple traversed byan electrical current[J]. Physics Procedia, 2014, 55(4): 165-172.
|