Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Processing practice on rolling and shearing of small size product for 5154 aluminum alloy
Authors: Wang Tonggang Yang Song 
Unit: Xinxiang Vocational and Technical College  North China Institute of Aerospace Engineering Tianjin University of Technology and Education 
KeyWords: rolling shearing 5154 aluminum alloy rolling force shearing force 
ClassificationCode:TG335
year,vol(issue):pagenumber:2022,47(8):146-151
Abstract:

For the problems of low production efficiency and easy generation of shrinkage holes, cracks and other defects in the casting process for 5154 aluminum alloy small-size products, a rolling and shearing processing method was proposed. In order to achieve multiple rolling under the protective atmosphere in a confined space, a single-groove and multi-pass roller was adopted. According to the principle of equal reduction rate, the total number of rolling times was set to six passes, and the reduction rate of each pass was calculated to be 27%, so as to determine the reduction amount of each pass. According to the physical properties, reduction amount and other influencing factors of 5154 aluminum alloy, it is calculated that the rolling force that the system needs to provide is 1195600 N, and the rolling torque is 71721 N·m. The test results show that the slab is in good shape without buckling, arching, waves, side bending and other sheet shape defects. According to the size requirements of the final product, the shearing mechanism with the coordinated movement of transverse and longitudinal double shear blades was designed, and the required shearing force was calculated to be 123120 N by reference to the shear strength. The optimal shearing scheme was determined by comparing the states of the products obtained from the two shearing schemes. Thus, the final product meets the requirement of less than 9 mm×45 mm specified in the technical regulations, which effectively solves the problems existing in the production.

Funds:
天津市自然科学重点基金项目(16JCZDJC38200)
AuthorIntro:
作者简介:王同刚(1978-),男,硕士,副教授,E-mail:wtg613@163.com
Reference:

 [1]李彩风, 张兆隆. 金属工艺学[M]. 北京: 北京理工大学出版社, 2013.


Li C FZhang Z L. Technology of Metals[M]. BeijingBeijing Institute of Technology Press2013.


[2]尹晓辉, 李响,刘静安,等. 铝合金冷轧及薄板生产技术[M]. 北京: 冶金工业出版社, 2010.


Yin X HLi XLiu J Aet al. Aluminum Alloy Cold Rolling and Sheet Production Technology[M]. Beijing: Metallurgical Industry Press,2010.


[3]杨荃, 陈先霖. 冷轧机的板形控制目标模型[J]. 北京科技大学学报, 1995(3):254-258.


Yang QChen X L. Target model of the automatic shape control on cold strip mill[J].Journal of University of Science and Technology Beijing1995,(3):254-258.


[4]薛春江, 徐文利, 张巍. 基于工程设计应用的铝板带热轧规程设计[J]. 轻合金加工技术, 2018,46(7):39-44.


Xue C JXu W LZhang W. Design of hot rolling schedule for aluminum plate and strip based on engineering design and application[J].Light Alloy Fabrication Technology2018,46(7):39-44.


[5]寇新民, 张冬花. 能耗负荷分配法在铝冷轧生产线的应用[J]. 冶金自动化, 2017,41(5):44-46.


Kou X M, Zhang D H. Energy load distribution for aluminum cold rolling[J]. Metallurgy Industry Automation2017,41(5):44-46.


[6]曹建国, 江军, 邱澜, . 新一代高技术宽带钢冷轧机全机组一体化板形控制[J]. 中南大学学报:自然科学版, 2019,50(7):1584-1591.


Cao J G, Jiang J, Qiu L, et al. High precision integrated profile and flatness control for new-generation high-tech wide strip cold rolling mills[J]. Journal of Central South University: Science and Technology2019,50(7):1584-1591.


[7]邢德茂, 姚利辉, 李学通. 2030 mm冷连轧机组板形预报及影响因素研究[J]. 塑性工程学报, 2021,28(3):210-216.


Xing D M, Yao L H, Li X T.Study on prediction and influencing factors of flatness of 2030 mm tandem cold rolling mill[J]. Journal of Plasticity Engineering2021,28 (3): 210-216.


[8]罗永军, 王长松, 曹建国, . 兼顾板形的热连轧机负荷分配的优化[J]. 北京科技大学学报, 2005(1):94-97.


Luo Y J, Wang C S, Cao J G, et al. Load distribution optimization helpful to shape control of hot strip mills[J]. Journal of University of Science and Technology Beijing2005, (1): 94-97.


[9]呼小军, 何安瑞, 王连生, . 基于改进遗传算法的铝热轧精轧负荷分配[J]. 轻合金加工技术, 2010,38(7):30-34.


Hu X J, He A R, Wang L S, et al. Aluminum hot finish rolling with optimized load distribution based on improved GA[J]. Light Alloy Fabrication Technology2010,38 (7): 30-34.


[10]孙升阳, 沈新玉, 胡柯, . 基于粒子群算法的单机架冷轧硅钢负荷分配优化[A]. 2009年全国冷轧板带生产技术交流会论文集[C].包头:2009.


Sun S Y, Shen X Y, Hu K, et al. Optimization of load distribution in single-stand rolling of silicon steel based on PSO algorithm[A]. Proceedings of the 2009 National Cold Rolled Strip Production Technology Exchange Conference[C]. Baotou: 2009.


[11]徐乐江. 板带冷轧机板形控制与机型选择[M]. 北京: 冶金工业出版社, 2007.


Xu L J. Flatness Control in Clod Strip Rolling and Mill Type Selection[M].Beijing: Metallurgical Industry Press,2007.


[12]沈继程, 矫志杰, 王国栋. 应用简单迭代法进行可逆冷轧机负荷分配计算[J]. 钢铁研究学报, 2007(3):35-37.


Shen J C, Jiao Z J, Wang G D. Simple iteration method of calculating load distribution for reversible cold mill[J]. Journal of Iron and Steel Research, 2007, (3): 35-37.


[13]Lenard J G. 板带轧制基础[M]. 龚殿尧, 宋向荣, . 沈阳: 东北大学出版社, 2015.


Lenard J G. Primer on Flat Rolling[M]. Translated by Gong D YSong X R. Shenyang:Northeastern University Press2015.


[14]华建新, 王贞祥. 全连续式冷连轧机过程控制[M]. 北京: 冶金工业出版社, 2000.


Hua J XWang Z X. Process Control of Fully Continuous Tandem Cold Mill[M]. BeijingMetallurgical Industry Press2000.


[15]杨美顺. 现代冷轧机发展现状及展望[J]. 中国冶金, 2004(10):15-19.


Yang M S. Development and expectation of modern cold rolling mills[J]. China Metallurgy, 2004, (10): 15-19.


[16]魏纯纯, 陈明和, 孙磊, . 3D封装用Cu/Sn/Cu焊点的组织与剪切性能研究[J].稀有金属,2020,44(6):603-608.


Wei C C, Chen M H, Sun L, et al. Microstructure and shear property of Cu/Sn/Cu solder joints for 3D packaging[J]. Chinese Journal of Rare Metals2020,44(6):603-608.


[17]刘培锷, 张世杰. 金属剪切过程力学研究进展[J]. 力学进展, 198717(1):39-45.


Liu P E, Zhang S J. On researches of shearing progresses of metals [J]. Advance in Mechanics, 1987, 17(1): 39-45.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com