Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Effect of aging treatment on microstructure and properties of cold rolled Cu-Ni-Si alloy strip
Authors: Liu Jinsong  Wu Anqi  Wang Songwei  Chen Shuaifeng  Chen Yan  Song Hongwu  Zhang Shihong 
Unit: Shenyang Ligong University  Institute of Metal Research  Chinese Academy of Sciences Jiangxi Copper Technology Institute Co. Ltd. 
KeyWords: Cu-Ni-Si alloy aging treatment cold rolling microstructure mechanical properties electrical conductivity 
ClassificationCode:TG146.1
year,vol(issue):pagenumber:2022,47(8):215-223
Abstract:

 Cu-2.36Ni-0.60Si-0.13Mg-0.059Zn alloy ingot was prepared by vacuum melting furnace, and the alloy plate with the thickness of 12 mm was obtained by using hot forging to cogging and then hot rolling. Then, the alloy strip with the thickness of 1 mm was obtained by multi-pass cold rolling, and the aging treatments under different conditions were conducted. Furthermore, the microstructure, mechanical properties and electrical conductivity of the alloy strip during cold rolling and aging processes were tested by optical metallography (OM), electron backscatter diffraction (EBSD), mechanical property test and electrical property test. The results show that with the continuous increasing of rolling deformation amount, the initial microstructure changes to fibrous, the grains are broken, and the hardness of alloy is improved. When the rolling deformation amount is 90%, the microhardness reaches 203.8 HV. After aging treatment at 450 ℃ for 6 h, the better comprehensive properties with the microhardness of 281.4 HV and the electrical conductivity of 46.4% IACS for the cold rolled plate are obtained. With the increasing of aging temperature, the size of the second phase increases obviously from 9.0 nm to 24.9 nm, and the matrix Goss and Z-shaped textures are transformed into R-cube and Goss textures after aging treatment.

Funds:
中国科学院重点部署项目(ZDRW-CN-2021-3)
AuthorIntro:
作者简介:刘劲松(1971-),男,博士,副教授,E-mail:jsliu@imr.ac.cn;通信作者:王松伟(1990-),男,博士,助理研究员,E-mail:swwang16b@imr.ac.cn
Reference:

 [1]Kim Y G, Seong T Y, Han J H, et al. Effect of heat treatment on precipitation behaviour in a Cu-Ni-Si-P alloy [J]. Journal of Materials Science, 1986, 214: 1357-1362.


[2]Cheng J Y, Tang B B, Yu F X, et al. Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging [J]. Journal of Alloys and Compounds, 2014, 614: 189-195.


[3]于朝清. 引线框架用高强高导铜合金材料 [J]. 电工材料, 2005, (2): 33-37.


Yu C Q. The summary of copper alloy with high-strength and high-conductivity [J]. Electrical Materials Alloy, 2005, (2): 33-37.


[4]王晓娟. 铜合金引线框架材料的加工与性能研究 [D]. 赣州: 江西理工大学, 2005.


Wang X J. Study on Processing and Properties of Copper Alloy Lead Frame Material [D]. Ganzhou: Jiangxi University of Science and Technology, 2005.


[5]潘志勇, 汪明朴, 李周, . 超高强度Cu-Ni-Si合金的研究进展 [J]. 金属热处理, 2007, 32(7): 55-59.


Pan Z Y, Wang M P, Li Z, et al. Process of study on super high strength Cu-Ni-Si alloy [J]. Heat Treatment of Metals, 2007, 32(7): 55-59.


[6]赵冬梅, 董企铭, 刘平, . 铜合金引线框架材料的发展 [J]. 材料导报, 2001, 15(5): 18-20.


Zhao D M, Dong Q M, Liu P, et al. Development of copper alloy for leadframe [J]. Materials Review, 2001, 15(5): 18-20.


[7]German R MHens K FJohnson J L. Powder metallurgy processing of thermal management materials for microelectronic applications [J]. International Journal of Powder Metallurgy, 1994, 30(2): 205-215.


[8]汪黎, 孙扬善, 薛烽. 我国引线框架铜基材料的市场需求与国产化策略 [J]. 世界有色金属, 2004, (8): 1-2.


Wang L, Sun Y S, Xue F. Market demand of copper-base material for lead wire frame in Chinese mainland and its strategy of import substitution through local production [J]. World Nonferrous Metals, 2004, (8): 1-2.


[9]Huang J Z, Xiao Z, Dai J, et al. Microstructure and properties of a novel Cu-Ni-Co-Si-Mg alloy with super-high strength and conductivity [J]. Materials Science and Engineering, 2019,(28):754-763.


[10]Wang J F, Jia S G, Chen S H, et al. Effect of aging precipitation on properties of Cu-Ni-Si-Mg alloy [J]. Advanced Materials Research, 2011,197-198: 1315-1320.


[11]黄国杰, 肖翔鹏, 马吉苗, . 固溶时效对Cu-1.4Ni-1.2Co-0.6Si合金组织性能的影响 [J]. 材料热处理学报, 2014, 35(8): 58-63.


Huang G J, Xiao X P, Ma J M, et al. Effect of solid solution and aging process on microstructure and properties of Cu-1.4Ni-1.2Co-0.6Si alloy [J]. Transactions of Materials and Heat Treatment, 2014, 35(8): 58-63.


[12]Kim H G, Lee T W, Kim S M, et al. Effects of Ti addition and heat treatments on mechanical and electrical properties of Cu-Ni-Si alloys [J]. Metals and Materials International, 2013, 19(1): 61-65.


[13]李伟, 刘平, 马凤仓, . 时效与冷变形对Cu-Ni-Si合金微观组织和性能的影响 [J]. 稀有金属, 2011, 35(3): 330-335.


Li W, Liu P, Ma F C, et al. Effect of aging and cold deformation on microstructure and properties for Cu-Ni-Si alloy [J]. Chinese Journal Rare Matals, 2011, 35(3): 330-335.


[14]Wang H S, Chen H G, Gu J W, et al. Effects of heat treatment processes on the microstructures and properties of powder metallurgy produced Cu-Ni-Si-Cr alloy [J]. Materials Science & Engineering: A, 2014, 619: 221-227.


[15]Gholami M, Vesely J, Altenberger I, et al. Effects of microstructure on mechanical properties of Cu-Ni-Si alloys [J]. Journal of Alloys and Compounds, 2017, 696: 201-212.


[16]Gholami M, Altenberger I, Vesely J, et al. Effect of severe plastic deformation on transformation kinetics of precipitates in CuNi3Si1Mg [J]. Materials Science & Engineering: A, 2016, 676: 156-164.


[17]Lei J G, Huang J L, Liu P, et al. The effects of aging precipitation on the recrystallization of Cu-Ni-Si-Cr alloy [J]. Journal of Wuhan University of Technology, 2005, 20(1): 21-24.


[18]He W, Chen Y L, Zhao Y N, et al. Correlation mechanism of grain orientation/microstructure and mechanical properties of Cu-Ni-Si-Co alloy [J]. Materials Science & Engineering: A, 2021, 814: 141-239.


 


[19]Srivastava V C, Schneider A, Uhlenwinkel V, et al. Effects of thermomechanical treatment on spray formed Cu-Ni-Si alloy [J]. Materials Science and Technology, 2004, 7(20): 839-848.


[20]Lee E Y, Han S Z, Euh K J, et al. Effect of Ti addition on tensile properties of Cu-Ni-Si alloys [J]. Metals and Materials International, 2011,(4): 569-576.


[21]Lockyer S A, Noble F W. Precipitate structure in a Cu-Ni-Si alloy [J]. Journal of Materials Science, 1994,29: 218-226.


[22]Jia Y L, Wang M P, Chen C, et al. Orientation and diffraction patterns of δ-Ni2Si precipitates in Cu-Ni-Si alloy [J]. Journal of Alloys and Compounds, 2013, 557: 147-151.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com