Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:An automatic cold upsetting process for automobile non-standard parts based on computer numerical analysis
Authors: Bai Shibing 
Unit: IFLYTEK Big Data Department Chongqing City Vocational College 
KeyWords: non-standard part  automatic cold upsetting  Deform-3D constitutive model  equivalent stress  load 
ClassificationCode:TG386.3
year,vol(issue):pagenumber:2022,47(9):30-38
Abstract:

 In order to change the current situation of multipre processes, low production efficiency and large differences of product performance in curvent production process for an automobile non-standard part, two kinds of automatic cold upsetting schemes were proposed, and the Johnson-Cook constitutive model of 10B21 steel was established by Deform-3D. Then, based on the model, the simulated forming of the parts in each station for the two schemes were conducted, and the deformation law, equivalent stress distribution and load situation of the material were analyzed. Furthermore, the process inspection and optimization were carried out, and the final forming scheme was determined, namely, blanking-diameter reducing and inner hole pre-forming-head pre-upsetting-flower head upsetting-head shaping-head final forming-punching, and the process test was completed. Production tests show that the finite element analysis results are accurate, the optimized cold upsetting process is reliable, and the mass production of the non-standard parts can be realized. The obtained parts have complete forming, good surface quality and no problems of scraping, folding, potholes and so on, and the dimensional accuracy meets the production requirements.

 

Funds:
重庆市教育委员会项目(193299);重庆市级规划项目(2020-GX-397)
AuthorIntro:
柏世兵(1983-),男,硕士,副教授 E-mail:bsb198309@163.com
Reference:

 [1]成美文, 刘风雷,李伟强,.不锈钢高锁螺母多工位镦锻成形组织演变规律研究[J].热加工工艺,2020,49(5):103-107.


 


Cheng M W,Liu F L,Li W Q,et al.Study on microstructure evolution rule of multi-station upsetting for stainless steel high-lock nut[J].Hot Working Technology,2020,49(5):103-107.


 


[2]张东民, 盛育东,张金玉,.六角开槽螺母的冷镦工艺优化及数值模拟[J].机械设计与制造,2018(3):191-194.


 


Zhang D M,Sheng Y D,Zhang J Y,et al.Numerical simulation and optimization for cold heading of hexagonal slot nut[J].Machinery Design & Manufacture,2018(3):191-194.


 


[3]丛兵兵, 孔明,张弘斌,.马车螺栓冷镦成形有限元模拟及模具设计[J].塑性工程学报,2022,29(2):76-81.


 


Cong B B,Kong M,Zhang H B,et al.Finite element simulation and die design of cold heading forming for carriage bolt[J].Journal of Plasticity Engineering,2022,29(2):76-81.


 


[4]孙恒. 基于响应面法的球销终镦工艺优化[J].煤矿机械,2020,41(5):105-108.


 


Sun H.Optimization of final upsetting process of ball pin based on response surface method[J].Coal Mine Machinery,2020,41(5):105-108.


 


[5]姚文俊, 陈松.汽车法兰轴结构件塑性成形工艺分析及改进[J].锻压技术,2020,45(11):7-12.


 


Yao W J,Chen S.Analysis and improvement on plastic forming process for structure part of automobile flange shaft[J].Forging & Stamping Technology,2020,45(11):7-12.


 


[6]赵毅, 霍文军,刘淑梅,.带法兰盘的阶梯轴冷镦挤成形工艺研究[J].轻工机械,2017,35(3):83-86.


 


Zhao Y,Huo W J,Liu S M,et al.Cold upsetting extrusion process analysis of multi-diameter shaft with flange[J].Light Industry Machinery,2017,35(3):83-86.


 


[7]杜昱青, 陈学文,连婷婷,.基于数值模拟的钢珠套螺杆多工位冷锻工艺优化[J].锻压技术,2020,45(9):22-28.


 


Du Y Q,Chen X W,Lian T T,et al.Optimization on multi-station cold forging process of steel ball sleeve screw based on numerical simulation[J].Forging & Stamping Technology,2020,45(9):22-28.


 


[8]宋琼, 梁强,付子城,.钢丝固定块多工位冷镦成形工艺[J].模具工业,2019,45(3):54-57.


 


Song Q,Liang Q,Fu Z C,et al.Design of multi-station cold upsetting process for wire clip[J].Die & Mould Industry,2019,45(3):54-57.


 


[9]郭慧敏. 一种航空发动机铆钉冷镦加工工艺研究[D]. 大连:大连理工大学,2019.


 


Guo H M.Research on Cold-heading Technology of a Type of Aeroengine Rivet[D]. Dalian:Dalian University of Technology,2019.


 


[10]闫洪. 塑性成形原理[M]. 北京:清华大学出版社, 2006.


 


Yan H.Principle of Plastic Forming[M].Beijing:Tsinghua University Press, 2006.


 


[11]王凌浩, 辛选荣.19MnB4冷镦钢常温压缩动态力学性能及本构方程[J].热加工工艺,2016,45(13):142-145.


 


Wang L H,Xin X R.Dynamic mechanical properties and constitutive equation of 19MnB4 cold heading steel compression at room temperature[J].Hot Working Technology,2016,45(13):142-145.


 


[12]林崟, 杨明鄂.汽车法兰带肩螺母多工位冷镦成形工艺试验[J].锻压技术,2021,46(8):123-130.


 


Lin Y,Yang M E.Experiment on multi-station cold heading process for automobile flange shoulder nut[J].Forging & Stamping Technology,2021,46(8):123-130.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com