Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Numerical simulation and process parameter optimization on tank head forming based on orthogonal test
Authors: Shu Zhihang1 2  Huang Bensheng1 2  Li Tianning1 2  Liu Junqi1 2  Zheng Jianneng3 
Unit: 1. School of New Energy and Materials  Southwest Petroleum University 2. Energy Equipment Institute  Southwest Petroleum University 3. Erzhong (Deyang) Heavy Equipment Co.  Ltd. 
KeyWords: head  plastic forming thinning rate  thickening rate  springback amount 
ClassificationCode:TG386.1
year,vol(issue):pagenumber:2022,47(9):75-82
Abstract:

 In order to explore the optimal combination of process parameters for the tank head stamping, improve efficiency and save time, the Dynaform finite element software was used for numerical simulation. Then, the three factors of punching speed, blank holder force and friction coefficient were selected as optimization variables, and the maximum thinning rate, the maximum thickening rate and the maximum springback amount of head were used as forming indicators. Furthermore, the orthogonal test scheme was designed, and the optimal combination of process parameters with the punching speed of 4000 mm·s-1,the blank holder force of 590 kN and the friction coefficient of 0.08 was determined by range analysis and variance analysis. Finally, the actual production test was carried out according to the optimal combination of process parameters, and the ovality of head port was used as the verification standard. The results show that the simulation results are consistent with the actual production results, and the final forming quality of head meets the requirements.

Funds:
四川省科技厅国际合作项目(2020YFH0151)
AuthorIntro:
舒致航(1996-),男,硕士研究生 E-mail:zhihangshu@163.com 通信作者:黄本生(1969-),男,博士,教授 E-mail:hbslxp@163.com
Reference:

 [1]He J X, Yang L L, Ma Y, et al. Simulation and application of a detecting rapid response model for the leakage of flammable liquid storage tank[J]. Process Safety and Environmental Protection, 2020, 141: 390-401.


 


[2]郑罡, 孙培栋, 彭翊, . 微压供热压力容器结构设计与力学分析[J]. 装备环境工程, 2019, 16(2): 1-6.


 


Zheng G, Sun P D, Peng Y, et al. Pressure vessel design and analysis of heating-reactor of advanced low-pressurized and passive safety system[J]. Equipment Environmental Engineering, 2019, 16(2):1-6.


 


[3]罗征志, 曾京, 黄烈兵, . 铁路罐车封头冲压成形研究[J]. 西南交通大学学报, 2013, 48(4): 745-749768.


 


Luo Z Z, Zeng J, Huang L B, et al. Stamp-forming of heads of railway tank cars[J]. Journal of Southwest Jiaotong University, 2013, 48(4): 745-749768.


 


[4]卢嘉炜, 郭子方, 吴志豪, . 日本高放废液玻璃固化技术[J]. 辐射防护, 2020, 40(1): 67-77.


 


Lu J W, Guo Z F, Wu Z H, et al. Vitrification technologies of high level radioactive liquid waste in Japan[J]. Radiation Protection, 2020, 40(1): 67-77.


 


[5]丁志杨, 陈梁玉, 赵坤民, . 一种大型薄壁碟形封头成形工艺优化[J]. 锻压装备与制造技术, 2017,  52(2): 62-65.


 


Ding Z Y, Cheng L Y, Zhao K M, et al. Optimization of forming process for one kind of large thin-wall dished head[J]. China Metalforming Equipment & Manufacturing Technology, 2017, 52(2): 62-65.


 


[6]史敏, 赵亦希, 孔庆帅, . 薄壁铝合金封头挡板辅助旋压成形方法[J]. 上海交通大学学报, 2015, 49(10): 1497-1503.


 


Shi M, Zhao Y X, Kong Q S, et al. Baffle-assistant spinning method for thin-walled aluminum alloy seal head[J]. Journal of Shanghai Jiaotong University, 2015, 49(10): 1497-1503.


 


[7]万晋. 加工减薄后的椭圆封头强度数值分析[J]. 石油化工设备, 2006(1): 41-43.


 


Wan J. Strength numerical analysis of elliptical heads due to machining thickness reduction[J]. Petro-Chemical Equipment, 2006(1): 41-43.


 


[8]王珂. 椭圆形封头冷冲压成形残余影响及其表征方法研究[D]. 杭州:浙江大学, 2015.


 


Wang K. Research on Residual Effects of Cold Stamping on Elliptical Head and Its Characterization Method[D]. HangzhouZhejiang University, 2015.


 


[9]Wu P, Wang Y M, Wan P. Study on simulation of stamping process and optimization of process parameters of fender[J]. Advances in Materials Science and Engineering, 2019.


 


[10]杨全毅, 张朝阳, 刘猛, . 焊接工艺对Q345R的硫化物应力腐蚀敏感性的影响[J]. 材料保护, 2021, 54(4): 22-26.


 


Yang Q Y, Zhang Z Y, Liu M, et al. Effect of welding process on the sulfide stress corrosion susceptibility of Q345R[J]. Material Protection, 2021, 54(4): 22-26.


 


[11]GB/T 251982010, 压力容器封头[S].


 


GB/T 251982010, Heads for pressure vessels[S].


 


[12]GB/T 18042000, 一般公差未标注公差的线性和角度尺寸的公差[S].


 


GB/T 18042000, General tolerancesTolerances for linear and angular dimensions without individual tolerance indications[S].


 


[13]GB/T 228.12021, 金属材料拉伸试验第1部分:室温试验方法[S].


 


GB/T 228.12021, Metallic materialsTensile testingPart 1: Method of test at room temperature[S].


 


[14]Wang W R, Huang L, Tao K H, et al. Formability and numerical simulation of AZ31B magnesium alloy sheet in warm stamping process[J]. Materials & Design, 2015, 87: 835-844.


 


[15]徐仲安, 王天保, 李常英, . 正交试验设计法简介[J]. 科技情报开发与经济, 2002, 12(5): 148-150.


 


Xu Z A, Wang T B, Li C Y, et al. Brief introduction to the orthogonal test design[J]. Journal of Library and Information Science, 2002, 12(5): 148-150.


 


[16]张成军. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2009.


 


Zhang C J. Experimental Design and Data Processing[M]. Beijing: Chemical Industry Press, 2009.


 


[17]Tekaslan , Gerger N,

eker U. Determination of spring-back of stainless steel sheet metal in “V” bending dies[J]. Materials & Design, 2008, 29: 1043-1050.


 


[18]Trzepiecinski T, Malinowski T, Pieja T. Experimental and numerical analysis of industrial warm forming of stainless steel sheet[J]. Journal of Manufacturing Process, 2017, 30: 532-540.


 


[19]李健. 镀镍薄板冲压成形过程中的回弹研究及稳健设计[D]. 湘潭:湘潭大学, 2016.


 


Li J. The Research on Springback in Stamping Forming Process of Nickel Plate and Robust Design[D]. XiangtanXiangtan University, 2016.


 


[20]汪荣鑫. 数理统计[M]. 西安: 西安交通大学出版社, 1986.


 


Wang R X. Mathematical Statistics[M]. Xian: Xian Jiaotong University Press, 1986.


 


[21]张源, 李静媛, 方智, . 基于Dynaform模拟冲压工艺对17%Cr超纯铁素体不锈钢表面起皱的影响[J]. 材料导报, 2017, 31(8): 156-161.


 


Zang Y, Li J Y, Fang Z, et al. Influence of stamping process by Dynaform simulation on the surface ridging of 17%Cr ultra-pure ferritic stainless steel[J]. Materials Reports, 2017, 31(8): 156-161.


 


[22]魏子豪, 朱春东, 郑淇文, . 基于DynaformStrenx960高强度钢折弯工艺影响因素分析[J]. 锻压技术, 2020, 45(12): 78-84.


 


Wei Z H, Zhu C D, Zheng Q W, et al. Analysis on influencing factors of bending process for Strenx960 high-strength steel based on Dynaform[J]. Forging & Stamping Technology, 2020, 45(12): 78-84.


 


[23]高嵩, 吴宇航,李奇涵,. 铝型材三维拉弯成形回弹预测的理论解析与数值模拟[J]. 锻压技术, 2021, 46(4): 143-149.


 


Gao SWu Y HLi Q Het al. Theoretical analysis and numerical simulation on springback prediction for 3D stretch bending of aluminum profile [J]. Forging & Stamping Technology2021, 46(4): 143-149.


 


[24]Verma R K, Haldar A. Effect of normal anisotropy on springback[J]. Journal of Materials Processing Technology, 2007, 190: 300-304.


 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com