Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Finite element simulation and springback prediction on whole process for CNC stretch forming process of nose cone skin
Authors: Zhang Hegang1 Wang Zhicheng2 Wang Xiaochen2 Du Jianning2 Peng Haoyun2  Zhu Li2 Li Xiaoqiang3 Yang Xiaojun4 
Unit: 1.Hangfa Intelligent Manufacturing (Beijing) Technology Co.  Ltd. Shenyang Aircraft Corporation 3.School of Mechanical Engineering and Automation  Beihang University 4.C3P Engineering Softeware International Co.  Ltd. 
KeyWords: skin stretch forming  springback prediction  CNC stretch forming machine whole process simulation 
ClassificationCode:V260.5;TH164;TG386
year,vol(issue):pagenumber:2022,47(8):83-89
Abstract:

 In order to improve the aerodynamic performance for new generation of aircraft, the requirements on the surface shape accuracy have been significantly increased, so it is necessary to control the springback of parts after the skin is stretched. Therefore, based on the self-developed domestic skin stretch forming simulation software AISF, the whole process of CNC stretch forming, trimming, springback for the nose cone skin was simulated numerically. Then, the key motion mechanism of VTL1000 CNC skin stretch forming machine was measured, and a finite element simulation model of skin stretch forming considering the actual motion of machine tool was established. Furthermore, the CNC stretch forming code of the actual parts was directly input into the finite element simulation model to ensure that the simulation boundary conditions were completely consistent with the experiment. Considering the actual production conditions, a simulation model of stretch forming-springback-trimming-pressing was established to realize the simulation prediction of springback. According to the optimized CNC stretch forming code, the actual parts were formed and digitally inspected. The results show that the springback prediction is basically consistent with the actual situation, which verifies the accuracy of the finite element simulation model.

Funds:
国家自然科学基金面上项目(52075025)
AuthorIntro:
张贺刚(1978-),男,硕士,工程师 E-mail:hgbox@qq.com 通信作者:李小强(1979-),男,博士,教授 E-mail:littlestrongcn@163.com
Reference:

 [1]朱明华, 王文斌, 李小强,. 大型客机钣金数字化柔性精准成形技术[J]. 南京航空航天大学学报, 2011, 43(2):216-221.


 


Zhu M H, Wang W B, Li X Q, et al. Digital,flexible and precise forming technology of sheet metal in large airliner[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(2):216-221.


 


[2]Corporation M S. MSC Virtual Manufacturing [R]. USA: MSC Software Corporation, 2001.


 


[3]Corporation N G. Stretch Forming Simulation (SFS) [R]. Indiana:AMSE, 1998.


 


[4]Ashbridge M T J, Leacock A G, Gilmour K R, et al. The effect of solution heat treatment and natural ageing on the yield characteristics of a 2024-O aluminium alloy[A].ASME.ASME International Mechanical Engineering Congress and Exposition[C]. USAASME, 2000.


 


[5]Leacock A G. Numerical Simulation of Anistropic Plasticity in Stretched Formed Aluminium Alloys [D]. Jordanstown: University of Ulster, 1999.


 


[6]Oding S, Stourov N. Technological Parameter Calculation and Stretch Forming Process Control of 3D Profile Parts[M]. Dordrecht: Springer Netherlands, 2003.


 


[7]Oding S S. Controlling the formation of double curvature skin elements on a program-controlled stretch former. I.[J]. Soviet Aeronautics:English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika 1987, 30(3): 57-61.


 


[8]Oding S S. Control of shaping of double-curvature skins on stretch-forming equipment with programmed control. II.[J]. Soviet Aeronautics:English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika 1987, 30(4): 44-48.


 


[9]白雪飘, 李东升, 万敏, . 基于蒙皮拉形模拟系统的数控拉形仿真与实践[J]. 塑性工程学报, 2004,11(1):43-45.


 


Bai X P, Li D S, Wan M, et al. Simulation and practice on NC stretch-forming for the stretch form system[J]. Journal of Plasticity Engineering, 2004,11(1):43-45.


 


[10]李卫东, 万敏, 韩金全. 飞机蒙皮数字化拉形系统 ASSFCAE[J]. 航空制造技术, 2007,(z1):498-503.


 


Li W D, Wan M, Han J Q. Numerical stretch forming system for aircraft skin[J]. Aeronautical Manufacturing Technology, 2007,(z1):498-503.


 


[11]李卫东, 万敏, 占强, 等.数控蒙皮横拉机运动分析与仿真控制 [J]. 北京航空航天大学学报, 2004,30(2):105-108.


 


Li W D, Wan M, Zhan Q, et al. Motion analysis and simulation control of numerical controlled transverse stretching machine for aircraft skin[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004,30(2):105-108.


 


[12]韩志仁, 孔庆猛, 孟祥韬, . 飞机蒙皮拉形加载轨迹研究[J]. 机械设计与制造, 2016,(4):258-261.


 


Han Z R, Kong Q M, Meng X T, et al. Study on loading trajectory of aircraft skin in stretch forming[J]. Machinery Design & Manufacture, 2016,(4):258-261.


 


[13]陈根发, 方继钊,王勇,等. 复杂鼓包蒙皮成形技术分析与优化[J].锻压技术,2020,45(8)82-87.


 


Chen G FFang J ZWang Yet al. Analysis and optimization on complex bulging skin forming technology[J]. Forging & Stamping Technology2020,45(8):82-87.


 


[14]房涛涛, 李晓星,郎利辉. 大厚度双曲度铝合金飞机蒙皮拉伸成形工艺优化[J]. 锻压技术,2021,46(1):29-3642.


 


Fang T TLi X XLang L H. Optimization on stretch forming process for hyperbolic aluminum alloy aircraft skin with large thickness [J]. Forging & Stamping Technology2021,46(1):29-3642.


 


 


[15]谢洪志, 王玲,赵天章,. 基于数字化的蒙皮拉形加载轨迹优化与应用[J]. 锻压技术,2021,46(1):56-59.


 


Xie H ZWang LZhao T Zet al. Optimization and application of loading trajectory in stretch forming of skin based on digital [J]. Forging & Stamping Technology2021,46(1):56-59.


 


[16]李小强, 宋楠,李东升. VTL 型数控蒙皮拉形机加载轨迹设计[J].塑性工程学报,201219 (4): 49-55.


 


Li X QSong NLi D S.Design of loading trajectory for VTL numerical control stretch forming machine[J].Journal of Plasticity Engineering201219 (4): 49-55.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com