Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of strain on in-situ tensile microstructure evolution for automotive extruded Mg-4Zn-1.2Y alloy
Authors: Yang Jingjiang1  Zhang Ming2  Li Gang3 
Unit: 1.Geely Automobile College  Hangzhou Vocational and Technical College 2.School of Mechanical Engineering  Zhejiang University of Technology 3.Zhejiang Geely Automobile Manufacturing Co.  Ltd. 
KeyWords: magnesium alloy  in-situ tensile  microstructure evolution  strain  micro-cracks 
ClassificationCode:TG146
year,vol(issue):pagenumber:2022,47(9):245-249
Abstract:

 The test of Mg-4Zn-1.2Y alloy for auto mobile lightweight was conducted by comprehensively using in-situ electron backscatter diffraction (EPD) and micro-tensile test methods, and the influence of strain on the in-site tensile microstructure evolution for alloy was analyzed. The research results show that the tensile strength of specimen is 218 MPa, the elongation is 25.3% obtained by in-situ tensile test, and the specimen breaks at the strain of 26%. With the increasing of tensile strain degree, more cracks occur in the alloy and the crack size increases. The twins produced in the tensile process can coordinate the grain deformation to a certain extent to eliminate the stress concentration phenomenon and avoid the crystal structure cracking. When the grain orientation angle of initial tensile specimen is in the range of 0°-50°, the quantitutive distribution of grain orientation angles is close to normal distribution characteristic, and the grain orientation angle is mainly in the range of 20°-30°. When the strain reaches 20%, the proportion of orientation angles in the range of 20°-30° is more than 10%, and the twinning produced in Mg-4Zn-1.2Y alloy under the in-situ tensile strain of 15% plays a good role in regulating grain orientation.

Funds:
浙江省自然科学基金资助项目(LQ19E050104)
AuthorIntro:
杨敬江(1981-),男,硕士,高级实验师 E-mail:yh15036956421@163.com
Reference:

 [1]武昌, 赵天亮, 许晋, . Al-Nb-B细化纯镁原位拉伸变形机制及其断裂机理[J]. 中国有色金属学报, 2021,31(8): 2081-2090.


 


Wu C, Zhao T L, Xu J, et al.In situ tensile deformation and fracture mechanism of Al-Nb-refined pure magnesium [J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 2081-2090.


 


[2]罗锡才, 刘灏霖, 康利梅, . 搅拌摩擦加工方向对AZ61镁合金组织和力学性能的影响[J]. 材料研究与应用, 2021, 15(3): 203-209.


 


Luo X C, Liu H L, Kang L M, et al.Effect of friction stir processing direction on microstructure and mechanical properties of AZ61 magnesium alloy [J].Journal of Materials Research and Application, 2021, 15(3): 203-209.


 


[3]郭丽丽, 郭浩然, 汪建强, . 轧制工艺对连续挤压AZ31镁合金板材成形性的影响[J]. 塑性工程学报, 2021, 28(7): 56-63.


 


Guo L L, Guo H R, Wang J Q, et al. Influence of rolling process on formability of continuously extruded AZ31 magnesium alloy sheets [J].Journal of Plasticity Engineering, 2021, 28(7): 56-63.


 


[4]李磊, 郎利辉,轩永波,. 基于单向拉伸的半固化GLARE层板成形性能分析[J]. 锻压技术, 2021, 46(2): 200-205.


 


Li L, Lang L H, Xuan Y B, et al. Analysis on forming performance of semi-cured GLARE laminate based on uniaxial tensile [J]. Forging & Stamping Technology, 2021, 46(2): 200-205.


 


[5]张丽英, 张晨, 郭翰韬, .晶间变形行为对AZ31镁合金延展性的影响[J]. 塑性工程学报, 2021, 28(4): 136-145.


 


Zhang L Y, Zhang C, Guo H T, et al. Effect of intergranular deformation behavior on ductility of AZ31 magnesium alloy [J].Journal of Plasticity Engineering, 2021, 28(4): 136-145.


 


[6]Ventura N M D, Kalácska S, Casari D, et al. {10-12} twinning mechanism during in situ micro-tensile loading of pure Mg: Role of basal slip and twin-twin interactions [J]. Materials & Design, 2021, 197: 109206.


 


[7]余富忠, 赵强李. 多向锻造对汽车用AZ80镁合金组织及性能的影响[J]. 锻压技术, 2021, 46(3):32-36.


 


Yu F Z, Zhao Q L. Influence of multi-directional forging on micro-structure and properties for AZ80 magnesium alloy used for automobile[J]. Forging & Stamping Technology, 2021, 46(3): 32-36.


 


[8]郑庭坚, 张丽霞, 廖娟. 超声振动辅助镁合金板拉伸力学行为及本构建模[J]. 塑性工程学报, 2020, 27(12): 170-176.


 


Zheng T J, Zhang L X, Liao J. Mechanical behavior and constitutive modeling of magnesium alloy sheet in ultrasonic vibration assisted tensile test[J]. Journal of Plasticity Engineering, 2020, 27(12): 170-176.


 


[9]付三玲, 李全安, 张清. Mg-12Gd-2Y-1Sm-0.5Zr镁合金高温拉伸过程中的显微组织演变[J]. 材料热处理学报, 2019, 40(12): 32-38.


 


Fu S L, Li Q A, Zhang Q. Microstructure evolution of Mg-12GD-2Y-1Sm-0.5Zr magnesium alloy during high temperature tensile process [J].Journal of Materials and Heat Treatment, 2019, 40(12): 32-38.


 


[10]肖震东, 刘宇坤, 国宏伟, . 不同形变温度下Mg-Al-Ca-Mn合金的变形机制[J]. 塑性工程学报, 2019, 26(5): 174-179.


 


Xiao Z D, Liu Y K, Guo H W, et al. Deformation mechanism of Mg-Al-Ca-Mn alloy at different deformation temperatures [J]. Journal of Plasticity Engineering, 2019, 26(5): 174-179.


 


[11]杨柳, 官英平, 段永川, . 轧制态ME20M镁合金热拉伸变形行为及加工图[J]. 稀有金属材料与工程, 2020, 49(5): 1715-1721.


 


Yang L, Guan Y P, Duan Y C, et al. Hot tensile deformation behavior and processing of rolled ME20M magnesium alloy[J]. Rare Metal Materials and Engineering, 2020, 49(5): 1715-1721.


 


[12]郭丽丽, 郭浩然, 汪建强, . 轧制工艺对连续挤压AZ31镁合金板材成形性的影响[J]. 塑性工程学报, 2021, 28(7): 56-63.


 


Guo L L, Guo H R, Wang J Q, et al. Influence of rolling process on formability of continuously extruded AZ31 magnesium alloy sheets [J]. Journal of Plasticity Engineering, 2021, 28(7): 56-63.


 


[13]顾佳卿, 唐伟能, 徐世伟. Mg-0.4Zn镁合金挤压板拉伸变形组织的演变[J]. 材料研究学报, 2021, 35(7): 553-560.


 


Gu J Q, Tang W N, Xu S W. Microstructure evolution during tensile deformation of an extruded Mg-0.4Zn alloy plate [J]. Journal of Materials Research, 2021, 35(7): 553-560.


 


[14]Jain A, Duygulu O, Brown D W, et al. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy AZ31B sheet [J]. Materials Science & Engineering, 2008, (1/2): 545-555.


 


[15]Reed-Hill R E, Robertson W D. Additional modes of deformation twinning in magnesium [J]. Acta Metallurgica, 1957, 5(12): 689-768.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com