Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Electromagnetic flanging of aging aluminum alloy based on multi-field coupling simulation
Authors: Wang Zimin  Zhao Tao  Ma Boyang  Luo Yimin  Li Xiaolong  Yu Haiping 
Unit: Shanghai Spaceflight Precision Machinery Institute Harbin Institute of Technology 
KeyWords: electromagnetic flanging  2219 aluminum alloy  die clearance alloy  thinning rate  multi-field coupling simulation 
ClassificationCode:TG391
year,vol(issue):pagenumber:2022,47(10):191-197
Abstract:

For the electromagnetic flanging of 2219 aluminum alloy shell in T6 state, a coupling model of electromagnetic field and structural field was established based on ANSYS/LS-DYNA. Then, the deformation rules of plate during the electromagnetic flanging process was analyzed by numerical simulation, and the influences of discharge voltage and preformed hole diameter on the die clearance and thinning rate in different forming areas were studied. The result shows that in the electromagnetic flanging process, the radial strain of material is beneficial to restrain the thinning of hole wall. With the increasing of discharge voltage, the die clearance of hole wall decreases significantly, but both the die clearance at the die fillet and the maximum thinning rate of material increase. With the increasing of preformed hole diameter, the die clearance of hole wall decreases, and the die clearance at the die fillet and the maximum thinning rate of material increase slightly. The simulation results are verified by the test, and when the discharge voltage and the preformed hole diameter are determined to be 12.75 kV and Φ99 mm, respectively, a normal flanging hole of Φ120 mm with a flanging height of not less than 27 mm can be obtained. 

Funds:
国家自然科学基金资助项目(52175304)
AuthorIntro:
王紫旻(1992-),男,硕士,工程师,E-mail:onemoln2o4@163.com;通信作者:于海平(1974-),男,博士,副教授,博士生导师,E-mail:haipingy@hit.edu.cn
Reference:

[1]于志达. 板材磁脉冲翻孔成形与变形规律研究[D]. 哈尔滨:哈尔滨工业大学,2017.

Yu Z D. Experiments and Deformation Law of Magnetic Pulse Flanging of Sheet Metal[D]. Harbin: Harbin Institute of Technology, 2017.

[2]蔡恒. 铝合金曲面板料电磁成形回弹实验研究[D]. 武汉:武汉理工大学,2012.

Cai H. Experimental Study of Electromagnetic Forming in Springback of Aluminum Alloy Curved Surface[D]. Wuhan: Wuhan University of Technology, 2012.

[3]周海洋,莫建华,李建军,等. 钛合金TC4室温下电磁胀形的工艺分析[J]. 塑性工程学报,2013203):76-81.

Zhou H Y, Mo J H, Li J J, et al. Experimental and numerical analysis of electromagnetic bulging process of titanium alloy TC4 under room temperature[J]. Journal of Plasticity Engineering, 2013, 20(3):76-81.

[4]张望,王于東,李彦涛,等. 基于双向电磁力加载的管件电磁翻边理论与实验[J]. 电工技术学报,20213614):2904-2911.

Zhang W, Wang Y D, Li Y T, et al. Theory and experiment of tube electromagnetic flanging based on bidirectional electromagnetic force loading[J]. Transactions of China Electrotechnical Society, 2021, 36(14):2904-2911.

[5]洪秀冬,黄亮,李建军,等. 大口径铝合金波纹管电磁胀形数值模拟[J]. 精密成形工程,201674):1-7.

Hong X D, Huang L, Li J J, et al. Numerical simulation of electromagnetic bulging of large diameter aluminum alloy bellows[J]. Journal of Netshape Forming Engineering, 2016, 7 (4):1-7.

[6]金淳,黄亮,李建军,等. 不同热处理状态下成形速率对2219 铝合金成形极限的影响[J].塑性工程学报,201724(1):125-132.

Jin C, Huang L, Li J J, et al. Influence of forming rate on forming limit of 2219 aluminum alloy under different heat treatment conditions[J]. Journal of Plasticity Engineering, 2017, 24(1):125-132.

[7]Jin Y Y, Yu H P. Enhanced formability and hardness of AA2195-T6 during electromagnetic forming[J]. Journal of Alloys and Compounds, 2022, 890:161891.

[8]孙圣朋. 钛合金板材及管件电磁成形技术的研究[D]. 沈阳:沈阳航空航天大学,2016.

Sun S P. Research on the Electromagnetic Forming Technology of Titanium Alloy Sheet and Pipe Fitting[D]. Shengyang: Shengyang Aerospace University, 2016.

[9]马伯洋,杨澍,李春峰,. 铝合金管等径孔电磁脉冲翻孔实验研究[J]. 锻压技术,2021464):191-198.

Ma B Y, Yang S, Li C F, et al. Experimental research on equal diameter hole flanging by electromagnetic pulse for aluminum alloy tube [J]. Forging & Stamping Technology, 2021, 46(4):191-198.

[10]王煜,张松,龚雄,等.电磁脉冲成形技术在铝合金壁板翻边孔上的应用与研究[J]. 制造业自动化,2021431):1-311.

Wang Y, Zhang S, Gong X, et al. Application and research of electromagnetic pulse forming used on flanging hole of aluminum alloy panels[J]. Manufacturing Automation, 2021, 43(1):1-3,11.

[11]柳爱群,黄西成. 高应变率变形的JohnsonCook动态本构模型参数识别方法[J]. 应用数学和力学,2014352):219-225.

Liu A Q, Huang X C. Identification of highstrainrate material parameters in dynamic JohnsonCook constitutive model[J]. Applied Mathematics and Mechanics, 2014, 35(2):219-225.

[12]黄伯云. 中国材料工程大典:第4卷  有色金属材料工程(上)[M]. 北京:化学工业出版社,2006.

Huang B Y. Chinese Material Engineering CanonVolume 4 Nonferrous Metal Material EngineeringPart I[M]. Beijing: Chemical Industry Press, 2006.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com