Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Process analysis and die design on cartrideg deep drawing
Authors: Liu Xin1 Guo Muji1 Li Denghu1 Zhou Han2 Liu Dong1 Zhang Gaojuan1 
Unit: 1. Chongqing Changjiang Electrical Appliances Industries Group Co.  Ltd. 2. Equipment Project Management Center  Army Equipment Department 
KeyWords: cartridge case  deep drawing  out-of tolerance of bottom thickness thinning  die design law of metal flow  bending deforamtion amount 
ClassificationCode:TG376
year,vol(issue):pagenumber:2022,47(12):81-86
Abstract:

 For a certain type of cartridge case, aiming at the problem of out-of-tolerance for center bottom thickness of case after deep drawing in the initial design scheme, the reason was analyzed by numerical simulation. The bending deformation amount of blank was too large during the first deep drawing process, so that the bending radius at the unconstrained bottom of the blank became smaller and the radial tensile stress was too larger, resulting in the thinning of the bottom of blank out of tolerance. On this basis, an optimized scheme was proposed to control the bending deformation amount of blank in the first deep drawing process and reduce the radial tensile stress at the bottom of blank. The simulation results show that the center bottom thickness of case has been effectively increased to 3.430 mm. And the optimized scheme was used for process test. The results show that the center bottom thickness average value of case reaches 3.452 mm, and the outer diameter, height and center bottom thickness of  case achieve the designed requirements. Thus, the numerical simulation results are in good agreement with the experimental results, which can guide the actual production.

Funds:
AuthorIntro:
刘新(1995-),女,硕士,工程师 E-mail:18426457621@163.com
Reference:

 (1)为了对弹壳的拉深成形过程进行仿真,应用DEFORM-2D构建弹壳拉深成形有限元模型,模拟分析了弹壳拉深成形过程中的金属塑性流动规律及应力、应变的变化情况。


 


(2)经数值模拟分析可知,初始设计方案中弹壳盂子中心底厚减薄超差的主要原因为:第1次拉深成形过程中,坯料快速弯曲导致无约束底部的弯曲半径变小、径向拉应力过大,从而使得坯料底部减薄超差。


 


(3)针对该问题,提出一种控制坯料第1次拉深成形的弯曲半径、减少坯料底部径向拉应力的优化方案。数值模拟和实际试制结果均显示,该优化方案可以有效改善盂子中心底厚,避免减薄超差的缺陷问题。


 


参考文献:


 


[1]肖善超. 弹壳多模一次连续变薄拉深工艺研究[D]. 秦皇岛:燕山大学,2012.


 


Xiao S C. Research on Multi-mode-one-off Ironing Process for Cartridge Case[D]. Qinhuangdao: Yanshan University, 2012.


 


[2]陈跃健, 王浩. 某带减速气囊的航空子弹气动特性研究[J]. 兵器装备工程学报,20214210):60-64,85.


 


Chen Y J, Wang H. Research on aerodynamic characteristics of a bullet with deceleration airbag [J]. Journal of Ordnance Equipment Engineering, 2021, 42(10): 60-64,85.


 


[3]宋晨, 李磊. 旋翼飘带稳定式子弹降落弹道特性[J]. 兵器装备工程学报,20214211):134-139.


 


Song C, Li L. Descending trajectory characteristics of rotor-wing and ribbon stabilized bullets [J]. Journal of Ordnance Equipment Engineering, 2021, 42(11): 134-139.


 


[4]冉松, 涂集林,黎梅,等. 智能制造在枪弹制造行业内的应用[J]. 兵工自动化,20203911):24-26,35.


 


Ran S, Tu J L, Li M, et al. Application of intelligent manufacturing system in ammunition industry [J]. Ordnance Industry Automation, 2020, 39(11): 24-26,35.


 


[5]涂集林, 李登虎,张亚军,等. 枪弹大批量定制发展策略研究[J]. 机械,2021487):44-51.


 


Tu J L, Li D H, Zhang Y J, et al. Development strategy of mass customization of ammunition [J]. Machinery, 2021, 48(7): 44-51.


 


[6]李晓光, 魏志芳,高建中,等. 枪弹弹壳挤盂组合模新型设计与研究[J]. 兵工自动化,2016352):82-85.


 


Li X G, Wei Z F, Gao J Z, et al. New design and research of bullet casting extrusion combined die [J]. Ordnance Industry Automation, 2016, 35(2):82-85.


 


[7]胡冶昌, 魏志芳,李晓光,等. 基于NX高级仿真的弹壳冲盂工序数字化模型研究[J]. 塑性工程学报,201724(2)122-127.


 


Hu Y C, Wei Z F, Li X G, et al. Digital model study on the cartridge case extrusion forming based on NX advanced simulation [J]. Journal of Plasticity Engineering, 2017, 24(2):122-127.


 


[8]彭连友, 黄志星,张琦. 一种新的盂子毛坯成形工艺技术[J]. 模具技术,2013,(2):34-36.


 


Peng L Y, Huang Z X, Zhang Q. A new craft for cup-shaped blank forming process [J]. Die and Mould Technology, 2013, (2): 34-36.


 


[9]王玉松. 7050铝合金弹壳成形工艺优化及热处理工艺的研究[D]. 重庆: 重庆大学,2015.


 


Wang Y S. Research on the Heat Treatment Process and Optimization of Forming Process of 7050 Aluminum Alloy Cartridge [D]. Chongqing:Chongqing University, 2015.


 


[10]朱绪强, 李德才,王龙,等. 小口径药筒轻量化及其工艺[J]. 兵工自动化,2013321):81-83.


 


Zhu X Q, Li D C, Wang L, et al. Lightweight of small caliber cartridge case and technological process [J]. Ordnance Industry Automation, 2013, 32(1):81-83.


 


[11]廖仕军, 吕刚,薛松,等. 弹壳底部平底成形工艺优化[J]. 兵器装备工程学报,20204111):182-185,206.


 


Liao S J, Lyu G, Xue S, et al. Study on flattening shaping process-optimized for campaign bullet [J]. Journal of Ordnance Equipment Engineering,2020, 41(11): 182-185,206.


 


[12]范才河, 沈彤,胡泽艺. 铝合金弹壳成形及失效分析[J]. 包装学报,2019111):87-93.


 


Fan C H, Shen T, Hu Z Y, et al. Forming and failure analysis of aluminum alloy cartridge case [J]. Packaging Journal, 2019, 11(1): 87-93.


 


[13]胡建军, 李小平. DEFORM-3D塑性成形CAE应用教程[M]. 北京:北京大学出版社, 2011.


 


Hu J JLi X P. Application Tutorial of CAE in Plastic Forming by DEFROM-3D [M]. Beijing: Peking University Press, 2011.


 


[14]隋毅, 梁强. 组合形活塞销冷镦挤成形工艺[J]. 锻压技术,2020451):109-113,124.


 


Sui Y, Liang Q. Cold upsetting-extruding process for combination piston-pins [J]. Forging & Stamping Technology, 2020, 45(1): 109-113,124.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com