Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research and application on thermal deformation behavior for stainless steel of nuclear power valve
Authors: Wang Hang1 2 3  Wang Aiqin1  Li Changyi2 3  Xie Jingpei1  Yu Xingsheng2 3  Song Yubing2 3 
Unit: 1.Shool of Materials Science and Engineering Henan University of Science and Technology   2.Luoyang CITIC HIC Casting  Forging Co.  Ltd.   3.CITIC Heavy Industries Co.  Ltd. 
KeyWords: F316H stainless steel  high temperature rheological stress  constitutive model  thermal processing map  dynamic recrystallization 
ClassificationCode:TG316
year,vol(issue):pagenumber:2022,47(12):221-226
Abstract:

 For the problems that coarse grains, mixed grains and without bottom wave in detection of large extra-thick F316H stainless steel valve forgings, the thermal rheological behavior at high temperature was studied to explore the best thermal working process parameters so as to guide practical production and application, and the thermal compression deformation tests were carried out by the thermal simulation tester Gleeble-1500D under the conditions of the strain rates of 0.001-1 s-1 and the deformation temperatures of 950-1250 . Then, the constitutive equation of high temperature rheological stress was established based on the Arrhenius model, and the thermal deformation activation energy was calculated to be 393.857 kJ·mol-1. Furthermore, the thermal processing map with the strain of  0.8 was established based on the DMM dynamic material model, and when the deformation temperature was 1100-1150 and the strain rate was 0.005-0.01 s-1, the power dissipation factor reached the peak value. Combined with microscopic metallographic analysis, the grains within this range underwent sufficient dynamic recrystallization, which could be used as the main processing area of thermal working. Finally, combined with the thermal processing map, the forging process of nuclear power stainless steel valve body forgings (12 inches in size) was designed, and the forgings with excellent grain size, non-destructive flaw detection and mechanical properties could be obtained through the production verification.

Funds:
洛阳市科技重大专项(2101005A)
AuthorIntro:
王行(1989-),男,博士研究生,工程师 E-mail:wanghangred@163.com 通信作者:王爱琴(1964-),女,博士,教授 E-mail:aiqin_wang888@163.com
Reference:

 [1]施业寿. 核电阀门国产化分析[J]. 阀门, 2013(1):31-33.


 


Shi Y S. The localization of nuclear valves[J]. Valve, 2013, (1): 31-33.


 


[2]赵昌盛. 不锈钢的应用及热处理[M]. 北京: 机械工业出版社, 2010.


 


Zhao C S. Application and Heat Treatment of Stainless Steel[M]. Beijing: China Machine Press, 2010.


 


[3]王艺南, 兰亮云, 张一婷, . 轧态904L超级奥氏体不锈钢动态再结晶行为[J]. 塑性工程学报, 2021, 28(7): 138-144.


 


Wang Y N, Lan L Y, Zhang Y T, et al. Dynamic recrystallization behavior of as-rolled 904L super austenitic stainless steel[J]. Journal of Plasticity Engineering, 2021, 28(7): 138-144.


 


[4]Babu K A, Mandal S, Athreya C N, et al. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel[J]. Materials & Design, 2017, 115: 262-275.


 


[5]齐珂, 隋大山, 陈飞, . 316LN钢奥氏体晶粒长大模型[J]. 塑性工程学报, 2014, 21(3): 98-103.


 


Qi K, Sui D S, Chen F, et al. Study on austenite grain growth behavior of 316LN steel[J]. Journal of Plasticity Engineering, 2014, 21(3): 98-103.


 


[6]吴从风, 李时磊, 张海龙, . 316LN奥氏体不锈钢的高温拉伸断裂行为[J]. 材料研究学报, 2014, 28(7): 481-489.


 


Wu C F, Li S L, Zhang H L, et al. On high temperature tensile fracture behavior of 316LN austenitic stainless steel[J]. Chinese Journal of Materials Research, 2014, 28(7): 481-489.


 


[7]赵晓东. 304不锈钢热变形条件下动态再结晶行为研究[D]. 太原:太原科技大学, 2009.


 


Zhao X D. Study on Dynamic Recrystallization Behavior of 304 Stainless Steel Under Hot Deformation[D]. Taiyuan: Taiyuan University of Science and Technology, 2009.


 


[8]Wang C J, Feng H, Zheng W J, et al. Dynamic recrystallization behavior and microstructure evolution of AISI 304N stainless steel[J]. Journal of Iron and Steel Research, 2013, 20(10): 107-112.


 


[9]裴文娇, 郭训忠, 王文涛, . 316L奥氏体不锈钢的高温流变行为[J]. 塑性工程学报, 2014, 21(3): 104-110.


 


Pei W J, Guo X Z, Wang W T, et al. Flow behaviors of 316L stainless steel at high temperature[J]. Journal of Plasticity Engineering, 2014, 21(3): 104-110.


 


[10]胡峰. 含铌奥氏体不锈钢热变形行为及热加工图[D]. 镇江: 江苏大学, 2018.


 


Hu F. Hot Deformation Behavior and Hot Working Diagram of Nb Containing Austenitic Stainless Steel[D]. Zhenjiang: Jiangsu University, 2018.


 


[11]齐珂. 核电用钢316LN动态再结晶行为试验研究与数值模拟[D]. 上海: 上海交通大学, 2014.


 


Qi K. Experimental and Numerical Study on Dynamic Recrystallization of 316LN Nuclear Power Steel[D]. Shanghai: Shanghai Jiao Tong University, 2014.


 


[12]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of stee[J]. Journal of Applied Physics, 1944, 15(1): 22-32.


 


[13]Srinivasan N, Prasad Y V R K. Hot working characteristics of nimonic 75, 80A and 90 superalloys: A comparison using processing maps[J]. Journal of Materials Processing Technology, 1995, 51: 171-192.


 


[14]Gronostajski Z. The deformation processing map for control of microstructure in CuAl9.2Fe3 aluminium bronze[J]. Journal of Materials Processing Technology, 2002, 126(9): 119-124.


 


[15]Prasad Y. Processing maps: A status report[J]. Journal of Materials Engineering and Performance, 2003, 12(6): 638-645.


 


[16]GB/T 63942017, 金属平均晶粒度测定法[S].


 


GB/T 63942017, MetalMethods for estimating the average grain size[S].


 


[17]NB/T 20003.22010, 核电厂核岛机械设备无损检测第2部分:超声检测[S].


 


NB/T 20003.22010, Non-destructive testing for mechanical componentsin nuclear island of nuclear power plantsPart 2: Ultrasonic testing[S].

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com