Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermal deformation behavior on new medium alloy ultra-high strength steel
Authors: Ning Jing1  Wang Ao1  Su Jie1  Cheng Xingwang2 
Unit: 1.Institute for Special Steels  Central Iron and Steel Research Institute   2.School of Materials  Beijing Institute of Technology 
KeyWords: ultra-high strength steel  thermal deformation  constitutive equation  thermal processing map  recrystallization 
ClassificationCode:TG142.41
year,vol(issue):pagenumber:2022,47(12):234-239
Abstract:

 The hot deformation behavior of new medium alloy ultra-high strength steel containing W, Mo and other carbide formers was studied by Gleeble-3800 thermal simulator under  the deformation temperature of 800 ℃-1200 ℃, the strain rate of 0.01-10 s-1, and the maximum strain of 0.7, the rheological stress curves at high temperature of test steel were obtained, which showed that the deformation resistance of test steel increased with the decreasing of deformation temperature and the increasing of deformation rate. When the test steel was hot compressed at a deformation temperature above 1000 ℃, it underwent dynamic recrystallization, and the grain coarsening and secondary recrystallization were promoted by increasing the deformation temperature, while the grain refinement and homogenization of recrystallized grains were promoted beneficially by increasing the deformation rate. According to the rheological stress curve at high temperature of test steel, the hot processing constitutive equation of test steel was calculated, and the hot processing diagram with the true strain of 0.4 was established. Combined with the analysis result of microstructure evolution, the optimum hot processing area of test steel is that the deformation temperature is 1000-1100 ℃ and the strain rate is 1-10 s-1.

Funds:
AuthorIntro:
宁静(1988-),女,硕士,高级工程师 E-mail:ningjing@nercast.com
Reference:

 [1]Handerhan K J, Garrison W M, Moody N R. A comparison of the fracture behavior of two heats of the secondary hardening steel AF1410[J]. Metallurgical Transactions A, 1989, 20(1):105-123.


 


[2]胡正飞, 吴杏芳,王春旭. 二次强化高CoNi超高强度合金钢的研究近况[J]. 钢铁研究学报, 2001, 13(4): 62-68.


 


Hu Z F, Wu X F, Wang C X. Recent status of enriched CoNi ultra-high strength steel with secondary hardening[J]. Journal of Iron and Steel Research, 2001, 13(4): 62-68.


 


[3]Ayer R, Machmeier P. On the characteristics of M2C carbides in the peak hardening regime of AerMet100 steel[J]. Metallurgical and Materials Transactions A, 1998, 28(3): 903-905.


 


[4]姜越, 尹钟大,朱景川,等. 超高强度马氏体时效钢的发展[J]. 特殊钢, 2004, 25(2):1-5.


 


Jiang Y, Yin Z D, Zhu J C, et al. Development of ultra-high strength maraging steel[J]. Special Steel, 2004, 25(2):1-5.


 


[5]周士猛, 程兴旺,张由景,等. 新型超高强度钢的高温形变热处理[J]. 材料工程, 2016, 44(5): 37-41.


 


Zhou S M, Cheng X W, Zhang Y J, et al. High temperature thermo-mechanical treatment of novel ultra-high strength steel[J]. Journal of Materials Engineering, 2016, 44(5): 37-41.


 


[6]王春旭, 刘宪民,田志凌,等. 超高强度23Co14Ni12Cr3MoE钢的热变形行为研究[J]. 航空材料学报,2011, 31(6): 19-23.


 


Wang C X, Liu X M, Tian Z L, et al. Hot deformation behavior of 23Co14Ni12Cr3MoE ultra-high strength steel[J]. Journal of Aeronautical Materials, 2011, 31(6): 19-23.


 


[7]任书杰, 罗飞,田野,. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程,2019, 47(6): 144-151.


 


Ren S J, Luo F, Tian Y, et al. Flow stress curve correction and phenomenological constitutive relationship of A100 ultra-high strength steel[J]. Journal of Materials Engineering, 2019, 47(6): 144-151.


 


[8]刘凯. 300M钢的热态变形特性及其动态再结晶模型研究[D]. 南昌:南昌航空大学, 2012.


 


Liu K. Investigation on Hot Deformation Feature and Dynamic Recrystallization Models of 300M Steel[D]. Nanchang: Nanchang Hangkong University, 2012.


 


[9]刘安武, 厉勇,王春旭,等. SAE9310钢热变形行为的研究[J]. 钢铁, 2009, 44(10): 82-86.


 


Liu A W, Li Y, Wang C X, et al. Investigation on hot deformation behavior of SAE9310 steel[J]. Iron and Steel, 2009, 44(10): 82-86.


 


[10]李志欣. DT300钢的组织性能及热变形行为研究[D]. 昆明:云南大学, 2012.


 


Li Z X. Investigation on Microstructure and Mechanical Properties and Hot Deformation Behavior of DT300 Steel[D]. Kunming: Yunnan University, 2012.


 


[11]王飞, 张英杰,杨卓越. 奥氏体化温度对WMo强化超高强度钢强韧性的影响[J]. 金属热处理, 2015, 40(7): 130-132.


 


Wang F, Zhang Y J, Yang Z Y. Effect of austenitizing temperature on strength-toughness of ultra-high strength steel containing W and Mo[J]. Heat Treatment of Metals, 2015, 40(7): 130-132.


 


[12]余永宁. 材料科学基础[M]. 北京:高等教育出版社,2006.


 


Yu Y N. Fundamentals of Materials Science and Engineering[M]. Beijing: Higher Education Press, 2006.


 


[13]王飞, 张英杰,杨卓越, . 新型二次硬化超高强度钢的高温塑性及热加工图[J]. 塑性工程学报, 2016, 23(6): 137-142.


 


Wang F, Zhang Y J, Yang Z Y, et al. Hot plasticity and processing maps of new secondary-hardening ultra-high strength steel[J]. Journal of Plasticity Engineering, 2016, 23(6): 137-142.


 


[14]Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel[J]. Appl.Phys., 1944, 15(1): 22-27.


 


[15]Sellars C M, Tegart W J M G. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


 


[16]Jonas J J, Sellars C M, Tegart W J M G. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1): 1-24.


 


[17]Ziegler H. Progress in Solid Mechanics[M]. New York: Wiley Press, 1963.


 


[18]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical and Materials Transactions A, 1984, 15(10): 1883-1892.


 


[19]王晓辉. USS122超高强度不锈钢热变形行为与强韧化机理的研究[D]. 昆明:昆明理工大学,2015.


 


Wang X H. Investigation on Hot Deformation Behavior and Strengthening and Toughening Mechanism of USS122 Ultra-high Strength Stainless Steel[D]. Kunming: Kunming University of Science and Technology, 2015.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com