Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Deformation behavior at high temperature and establishment of constitutive model of GGG70L ductile iron
Authors: Ding Huiying  Guan Yanjin  Li Yuqi  Zhai Jiqiang  Lin Jun 
Unit: Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education Shandong  University 
KeyWords: GGG70L ductile iron  deformation behavior  constitutive model  laser surface quenching stress-strain field 
ClassificationCode:TG143.5; TG155.5
year,vol(issue):pagenumber:2022,47(12):249-255
Abstract:

 In order to obtain the constitutive model of GGG70L ductile iron accurately, realize the numerical simulation of laser surface quenching process and the deformation analysis of heat treatment, the thermal simulation experiments with the deformation rates of 0.01, 0.1, 1 and 10 s-1 at the deformation temperatures of 800-1100 were conducted, and the deformation behavior of GGG70L ductile iron was studied. Then, the constitutive model of GGG70L ductile iron was established based on the J-C optimization model and the strain-compensated Arrhenius model. The results show that the softening effect of GGG70L ductile iron has a negative correlation with temperature and strain rate, and the work hardening effect has a negative correlation with temperature and a positive correlation with strain rate. The fitting effect based on the strain-compensated Arrhenius model is better, and the average relative error is only 5.11%, which describes the deformation behavior of GGG70L ductile iron more accurately and lays the foundation for the numerical simulation of stress-strain field in the laser surface quenching process of GGG70L ductile iron.

Funds:
国家重点研发计划(2020YFB2020301)
AuthorIntro:
丁慧莹(1998-),女,硕士研究生 E-mail:202014092@mail.sdu.edu.cn 通信作者:管延锦(1969-),男,博士,教授 E-mail:guan_yanjin@sdu.edu.cn
Reference:

 [1]孙立喜, 刘晓烈,潘辉. 球墨铸铁在汽车覆盖件拉伸模中的应用[J]. 金属材料与冶金工程, 2008, (4): 11-13.


 


Sun L X, Liu X L, Pan H. Application of ductile iron in drawing die of automobile panel[J]. Metal Materials and Metallurgy Engineering, 2008, (4): 11-13.


 


[2]孙加林, 陈君才,周融,. 碳钢球化体的激光相变硬化数学模拟[J]. 昆明工学院学报, 1993, (4): 25-31.


 


Sun J L, Chen J C, Zhou R, et al. Mathematical simulation of laser phase change hardening of spheroidized carbon steel[J]. Journal of Kunming Institute of Technology, 1993, (4): 25-31.


 


[3]Yang Y S, Na S J. Effect of transformation plasticity on residual stress fields in laser surface hardening treatment[J]. Journal of Heat Treating, 2008, 9(1): 49-56.


 


[4]郭怡晖. 球墨铸铁QT600-3激光相变硬化数值模拟与试验研究[D]. 长沙: 湖南大学, 2010.


 


Guo Y H. Numerical Simulation and Experimental Study on the Laser Transformation Hardening of Ductile Cast Iron QT600-3[D]. Changsha: Hunan University, 2010.


 


[5]尹博. GGG70L激光表面淬火工艺参数及淬火层性能研究[D]. 天津: 天津理工大学, 2012.


 


Yin B. Study on the Process Parameters and Quenched Layer Performance of Laser Surface Hardening of GGG70L[D]. Tianjin: Tianjin University of Technology, 2012.


 


[6]刘宏斌, 沈喜堂. 激光淬火、感应淬火和火焰淬火对模具变形的影响[J]. 汽车工艺与材料, 2016, (7): 22-24.


 


Liu H B, Shen X T. Influence of laser quenching, induction quenching and flame quenching on die deformation[J]. Automobile Technology and Material, 2016, (7): 22-24.


 


[7]夏子凡. 高磷铸铁激光淬火技术研究[D]. 镇江: 江苏科技大学, 2019.


 


Xia Z F. Study on Laser Quenching Technology of High Phosphorus Cast Iron[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.


 


[8]Casalino G, Moradi M, Moghadam M K, et al. Experimental and numerical study of AISI 4130 steel surface hardening by pulsed Nd: YAG laser[J]. Materials, 2019, 12(19): 3136-3136.


 


[9]Johnson G R,Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures[J]. Engineering Fracture Mechanics,1983,21:541-548.


 


[10]Bodner S R, Partom Y. Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. Journal of Applied mechnics, 1975, 42(2): 385-389.


 


[11]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.


 


[12]Shokry A, Gowid S, Kharmanda G. An improved generic Johnson-Cook model for the flow prediction of different categories of alloys at elevated temperatures and dynamic loading conditions[J]. Materials Today Communications, 2021,27:102296.


 


[13]张龙, 王强, 杨勇彪, . 铸态稀土镁合金热变形应变补偿型本构模型[J]. 热加工工艺, 2015, 44(16): 131-134.


 


Zhang L, Wang Q, Yang Y B, et al. A strain compensation constitutive model for as-cast rare earth magnesium alloy during thermal deformation[J]. Hot Working Technology, 2015, 44(16): 131-134.


 


[14]朱洪军. 高强韧Ti6246合金热变形行为及应变补偿型本构模型[J]. 金属热处理, 2016, 41(8): 184-188.


 


Zhu H J. Thermal deformation behavior and strain compensation constitutive model of high strength and toughness Ti6246 alloy[J]. Heat Treatment of Metals, 2016, 41(8): 184-188.


 


[15]陈勇, 文光奇, 张晓明, . 高锰TWIP钢热变形行为及应变补偿型本构方程的建立[J]. 东北大学学报: 自然科学版, 2021, 42(3): 325-332.


 


Chen Y, Wen G Q, Zhang X M, et al. Establishment of hot deformation behavior and strain compensation constitutive equation for high manganese TWIP steel[J]. Journal of Northeastern University: Natural Science, 2021, 42(3): 325-332.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com