Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Vibration reduction research based on lightweight design of slider
Authors: Han Jingwei  Ding Wuxue  Sun Yu  Wang Min  Liu Yongxin 
Unit: School of Mechanical Engineering  Nanjing University of Science and Technology 
KeyWords: crank slider mechanism  inertia force  topology optimization  vibration response  vibration reduction 
ClassificationCode:TG315.5+1
year,vol(issue):pagenumber:2023,48(3):175-179
Abstract:

  In order to reduce the vibration of mechanical press and improve the quality of workpiece, the characteristics of inertia force produced by slider crank mechanism of press were analyzed. And the result shows that the mass of slider is one of the main factors affecting the magnitude of inertia force. Then, with the goal of reducing the mass of slider and the equivalent inertia force, without affecting the strength and stiffness of slider, the topology optimization analysis of the slider was carried out by using the topology optimization module of ANSYS Workbench. And through simulation analysis, it is found that the mass of slider before and after optimization is reduced by 16%, which verifies the feasibility of this method. At the same time, the vibration model of single-degree-of-freedom system for press was established, and taking the vibration response of fuselage as the objective, the vibration response curves of slider before and after the slider topology optimization were analyzed and compared. The results show that the maximum vibration amplitude is reduced by 14.3% before and after the slider topology optimization, which verifies the reliability of the method and provides a certain reference for the vibration reduction of mechanical press.

Funds:
江苏省重大科技成果转化项目(BA2021067)
AuthorIntro:
作者简介:韩经伟(1998-),男,硕士研究生 E-mail:516568962@qq.com 通信作者:丁武学(1966-),男,博士,副教授 E-mail:wuxuexie@mail.njust.edu.cn
Reference:

 [1]赵宏松, 陈林书, 谈宇. 高速重载压力机传动系统参数设计[J]. 锻压装备与制造技术, 2020, 55(5): 33-36.


Zhao H S, Chen L S, Tan Y. Parameter design of transmission system of high speed and heavy load press[J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(5): 33-36.

[2]陈苏权. 压力机冲裁振动控制实验研究[J]. 装备制造技术, 2008, (6): 13-15.

Chen S Q. Experimental studies on control of press′s punching vibration[J]. Equipment Manufacturing Technology, 2008, (6): 13-15.

[3]Otsu M, Yamagata C, Osakada K. Reduction of blanking noise by controlling press motion[J]. CIRP Annals-Manufacturing Technology, 2003, 52(1): 245-248.

[4]张世顺. 落料压力机反向载荷产生机理及控制研究[D]. 济南: 山东大学, 2017.

Zhang S S. Studies on Forming Mechanism and Control Methods of Reverse Tonnage in Blanking Press[D]. Jinan: Shandong University, 2017.

[5]蔺海鸥. 高速压力机的振动研究及计算机仿真[D]. 西安: 西安理工大学, 2005.

Lin H O. Vibration Research of High-speed Press and Computer Simulation[D]. Xi′an: Xi′an University of Technology, 2005.

[6]丁旺. 高速精密数控冲床的振动研究[D]. 南京: 南京理工大学, 2011.

Ding W. Vibration Research of High-speed Precision CNC Punch[D]. Nanjing: Nanjing University of Science and Technology, 2011.

[7]金旭星. 基于MATLAB的高速冲床系统振动分析及平衡策略研究[J]. 机械设计与制造, 2013, (7): 269-272.

Jin X X. Study on system vibration analysis and balancing strategy of high-speed press based on MATLAB[J]. Machinery Design & Manufacture, 2013, (7): 269-272.

[8]闵文君. OCP-60E型机械压力机振动检测与抑制研究[D]. 宁波: 宁波大学, 2020.

Min W J. Research on Vibration Detection and Vibration Suppression of OCP-60E Mechanical Press[D]. Ningbo: Ningbo University, 2020.

[9]徐腾. 基于多领域统一仿真的高速冲床振动分析与减振研究[D]. 广州: 华南理工大学, 2017.

Xu T. Research on Vibration Analysis and Vibration Reduction of High-speed Punching Press: Multidomain Unified Simulation[D]. Guangzhou: South China University of Technology, 2017.

[10]王苏号, 贾方, 王兴松. 基于Optistruct的伺服压力机机身拓扑优化[J]. 锻压装备与制造技术, 2007, (6): 34-36.

Wang S H, Jia F, Wang X S. Topology optimization for servo press body based on OptiStruct[J]. China Metalforming Equipment & Manufacturing Technology, 2007, (6): 34-36.

[11]张义民. 机械振动[M]. 北京: 清华大学出版社, 2007.

Zhang Y M. Mechanical Vibration[M]. Beijing: Tsinghua University Press, 2007.

[12]彭发忠, 王传英, 柴恒辉,等. 基于分层结构的伺服压力机滑块轻量化设计[J]. 清华大学学报: 自然科学版, 2020, 60(12): 1016-1022. 

Peng F Z, Wang C Y, Chai H H, et al. Lightweight slider design for a servo press based on its layered structure[J]. Journal of Tsinghua University: Science and Technology, 2020, 60(12): 1016-1022.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com