Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of temperature cycle on mechanical properties of 30CrMnSiNi2A steel
Authors: Xu Jianxin1  Cui Yongzhi2  Liu Bingfei3 
Unit: 1.Technology Department  Civil Aviation University of China  2.School of Aeronautical Engineering  Civil Aviation University of China  3.Science and Technology Innovation Research Institute  Civil Aviation University of China 
KeyWords: 30CrMnSiNi2A steel  temperature cycle  constitutive model  yield strength  tensile strength 
ClassificationCode:TG142.33
year,vol(issue):pagenumber:2023,48(3):201-210
Abstract:

 The change rules of yield strength and tensile strength for 30CrMnSiNi2A ultra-high strength steel after treatment with different cycle times and different temperature ranges were studied by using  LRP500 self-controlled temperature cycle fatigue tester, and the influences of temperature cycling treatment on the mechanical properties of 30CrMnSiNi2A steel were studied by experimental test, theoretical calculation and finite element simulation. The results show that the yield strength and tensile strength of 30CrMnSiNi2A steel decreases by temperature cyclic treatment. The higher the temperature cycle range is, the more the number of cycles is, the more obviously the mechanical properties of materials decrease. Based on the experimental data, the modified constitutive model and the finite element numerical simulation results of 30CrMnSiNi2A steel are given considering temperature range and cycle times. The results show that the tensile strength decays by 0.65% and the yield strength decays by 1.67% for every 20 ℃ increase in temperature when the number of cycles keeps 100 and the upper limit of the temperature range exceeds 100 ℃, while the tensile strength decays by 0.95% and the yield strength decays by 1.94% for every increase in the number of cycles by 100 when the temperature range is 10-80 ℃ and the number of cycles is more than 600.

Funds:
国家自然科学基金资助项目(11502284);中科院重点部署项目(KFZD-SW-435)
AuthorIntro:
作者简介:徐建新(1967-),男,博士,教授 E-mail:jxxu_cauc@163.com 通信作者:刘兵飞(1985-),男,博士,教授 E-mail:bingfeiliu2@126.com30CrMnSiNi2A
Reference:

 [1]牛靖, 董俊明,何源,等.超高强钢30CrMnSiNi2A冲击韧度试验研究[J]. 机械强度,2006,28(4): 607-610.


Niu J, Dong J M, He Y, et al. Instrumented impact properties of ultra-high strength steel 30CrMnSiNi2A[J]. Journal of Mechanical Strength, 2006, 28(4): 607-610.

[2]万筱如, 许昌淦.高强度和超高强度钢[M].北京:机械工业出版,1988.

Wan X R, Xu C G. High Strength and Ultrahigh Strength Steel[M]. Beijing: China Machine Press, 1988.

[3]陈群志, 杨蕊琴,李国元,等.腐蚀对30CrMnSiNi2A 钢结构疲劳寿命的影响[J]. 装备环境工程, 2007, 4(5): 7-9,17. 

Chen Q Z, Yang R Q, Li G Y, et al. Influence of corrosion on fatigue life of 30CrMnSiNi2A steel structure[J]. Equipment Environmental Engineering, 2007, 4(5): 7-9,17.

[4]Niu Q L, Ming W W, Chen M, et al. Dynamic mechanical behavior of ultra-high strength steel 30CrMnSiNi2A at high strain rates. and elevated temperatures[J]. Journal of Iron and Steel Research International, 2017, 24(7): 724-729.

[5]周义清, 张治民.30CrMnSiNi2A钢在不同应变率下的力学性能研究[J].兵器材料科学与工程,2010,33(4):46-50.

Zhou Y Q,Zhang Z M. Mechanical properties of 30CrMnSiNi2A steel under different strain rates [J]. Ordnance Material Science and Engineering,2010,33(4):46-50.

[6]花峰, 刘宪民,王春旭.化学成分对 30CrMnSiNi2A 钢力学性能的影响[J].钢铁研究学报,2003,(3):25-26,69.

Hua F,Liu X M,Wang C X. Effect of chemical composition on mechanical properties of 30CrMnSiNi2A steel [J]. Journal of Iron and Steel Research,2003,(3):25-26,69.

[7]刘天琦. 回火温度对 30CrMnSiNi2A 钢组织和性能的影响[J].特殊钢,2003,(2):16-18.

Liu T Q. Effect of tempering temperature on microstructure and properties of 30CrMnSiNi2A steel [J]. Special Steel, 2003,(2):16-18.

[8]许泽建, 李玉龙,李娜,等.加载速率对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响[J].金属学报,2006,(9):965-970. 

Xu Z J,Li Y L,Li N,et al. Effect of loading rate on mode Ⅰ dynamic fracture toughness of high strength steels 40Cr and 30CrMnSiNi2A[J]. Acta Metallurgica Sinica,2006,(9):966-967. 

[9]武海军, 姚伟,黄风雷,等.超高强度钢30CrMnSiNi2A动态力学性能实验研究[J].北京理工大学学报,2010,30(3):258-262.

Wu H J,Yao W,Huang F L,et al. Experimental study on dynamic mechanical properties of 30CrMnSiNi2A ultra high strength steel [J]. Journal of Beijing Institute of Technology, 2010,30(3):258-262.

[10]许良, 刘鹏.超声波冲击对30CrMnSiNi2A钢疲劳性能的影响[J].金属热处理,2015,40(10):60-63.

Xu L,Liu P. Effect of ultrasonic shock on fatigue properties of 30CrMnSiNi2A steel [J]. Heat Treatment of Metals,2015,40(10):60-63.

[11]Liu J H,Wen C,Yu M,et al.Manifestations in corrosion prophase of ultra-high strength steel 30CrMnSiNi2A in sodium chloride solutions[J].Journal of Wuhan University of Technology: Materials Science Edition,2014,29(2):367-373.

[12]罗来正, 周堃,黎小锋,等.海洋大气环境与拉伸疲劳载荷耦合作用下30CrMnSiNi2A钢的腐蚀损伤行为[J].表面技术,2021,50(8):349-358

 Luo L Z,Zhou K,Li X F, et al. Corrosion behavior of 30CrMnSiNi2A steel under ocean atmosphere coupled with tensile fatigue load [J]. Surface Technology, 2021,50(8):349-358.

[13]刘宪民, 花峰,刘蕤,等.热处理对30CrMnSiNi2A钢力学性能的影响[J].钢铁,2003,(1):43-47.

Liu X M,Hua F,Liu R,et al. Effect of heat treatment on mechanical properties of 30CrMnSiNi2A steel [J]. Iron & Steel, 2003,(1):43-47.

[14]张勇, 樊伟杰,张泰峰,等. 预腐蚀对30CrMnSiNi2A钢力学性能影响研究[A].2018第五届海洋材料与腐蚀防护大会[C].北京,2018.

Zhang Y,Fan W J,Zhang T F,et al. Effect of pre-corrosion on mechanical properties of 30CrMnSiNi2A steel [A]. The 5th Marine Materials and Corrosion Protection Conference[C]. Beijing, 2018.

[15]李磊, 张先锋,吴雪,等.不同硬度30CrMnSiNi2A钢的动态本构与损伤参数[J].高压物理学报,2017,31(3):239-248.

Li L,Zhang X F,Wu X,et al.Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardness [J]. Chinese Journal of High Pressure Physics, 2017,31(3):239-248.

[16]郑修麟, 张铮,江春生.循环冷处理对30CrMnSiNi2A钢力学性能的影响[J].航空学报,1989,(10):562-563.

Zheng X L,Zhang Z,Jiang C S. Effect of cyclic cold treatment on mechanical properties of 30CrMnSiNi2A steel [J]. Acta Aeronautica et Astronautica Sinica,1989,(10):562-563.

[17]余万千, 郁锐,崔世堂.考虑应力三轴度影响30CrMnSiNi2A钢韧性断裂研究[J].爆炸与冲击,2021,41(3):47-54.

Yu W Q,Yu R,Cui S T. Study on ductile fracture of 30CrMnSiNi2A steel considering stress triaxiality [J]. Explosion and Shock Waves, 2021,41(3):47-54.

[18]陈跃良, 张柱柱,张勇,等.冲击载荷下点蚀损伤对30CrMnSiNi2A钢应力集中影响的数值模拟研究[J].重庆理工大学学报:自然科学,2020,34(11):69-78.

Chen Y L,Zhang Z Z,Zhang Y,et al. Numerical simulation study on the effect of pitting damage on stress concentration of 30CrMnSiNi2A steel under impact load [J]. Journal of Chongqing University of Technology: Natural Science, 2020,34(11):69-78.

[19]焦明. 30CrMnSiNi2A钢热处理过程的数值模拟及实验研究[D].长春:吉林大学,2017.

Jiao M. Numerical Simulation and Experimental Study on Heat Treatment Process of 30CrMnSiNi2A steel[D]. Changchun: Jilin University, 2017.

[20]曹建国, 王天聪,李洪波,等.基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J].机械工程学报,2016,52(4):90-96,102.

Cao J G,Wang T C,Li H B,et al. High temperature deformation constitutive relation of non-oriented electrical steel based on improved Arrhenius model[J]. Journal of Mechanical Engineering,2016,52(4):90-96,102.

[21]赵慧俊, 王宝雨,刘钢,等.基于球化机理的TA15钛合金热变形统一本构模型[J]. 工程科学学报,2014,36(7):925-930.

Zhao H J,Wang B Y,Liu G,et al. Unified constitutive model for hot deformation of TA15 titanium alloy based on spheroidization mechanism[J]. Chinese Journal of Engineering,2014,36(7):925-930.

[22]Zhu F H, Xiong W, Li X F, et al.A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy[J].Rare Metals,2018,37(12):1035-1045.

[23]杨合,詹梅. 材料加工过程实验建模方法[M]. 西安:西北工业大学出版社, 2008

Yang H,Zhan M. Experimental Modeling Method of Material Processing Process[M]. Xi′an: Northwestern Polytechnical University Press, 2008

[24]Johnson G R,Cook W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[J].Engineering Fracture Mechanics,1983,21:541-547.

[25]Xiao X K,Mu Z C,Hao P,et al. Effect of the Lode parameter in predicting shear cracking of 2024-T351 aluminum alloy Taylor rods[J]. International Journal of Impact Engineering,2018,120:185-201.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com