Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Microstructure evolution laws of multi-pass compression deformation for nickel-base superalloy GH4065A
Authors: Shui Lang1 2  Fu Jianhui1 2  Lai Yu1 2 
Unit: 1. Department of Special Steel Technology  Chengdu Institute of Advanced Metallic Material Technology and Industry  Co. Ltd.  2. State Key Laboratory of Metal Material for Marine Equipment and Application 
KeyWords: mickel-base superalloy  multi-pass hot deformation  cogging process coarse grains complete recrystallization 
ClassificationCode:TG316
year,vol(issue):pagenumber:2023,48(3):244-254
Abstract:

 The microstructure evolution of nickel-base superalloy GH4065A during the multi-pass compression deformation process using staged cooling process with different strain rates and different strain amounts was studied. The results show that by accumulating the engineering strain amount of 75% in two passes with each compression amount of 50%, a fully recrystallized and fine-grained structure close to the 70% engineering strain amount in a single pass under the same temperature range and the same strain rate can be obtained, that is, the accumulated true strain reaches above 1.39. A engineering strain amount of lower than 50% in each pass is likely to cause incompletely crystallized “necklace structure” or coarse grains. The cogging process of cast with the diameter of Φ508 mm simulated by Deform shows that the set deformation process is able to allow the central part of billet to reach the accumulated more than the equivalent strain of 1.39 and to reach complete recrystallization by two-time upsetting and two-time pulling, whereas two ends are still partially failed to reach the accumulated equivalent strain of 1.39, requiring the third deformation to achieve complete recrystallization. And, the problem of coarse grains during deformation needs to be controlled by adjusting the precipitation of γ′ phase.

Funds:
AuthorIntro:
作者简介:税烺(1987-),男,博士,高级工程师 E-mail:ustb1234@126.com
Reference:

 [1]陈益哲, 庞玉华,王建国,等. GH2907高温合金热加工工艺窗口的建立与验证[J]. 锻压技术,2022,47(8):224-234.


Chen Y Z,Pang Y H,Wang J G,et al. Establishment and verification on hot working process window for superalloy GH2907 [J]. Forging & Stamping Technology,2022,47(8):224-234.

[2]方军, 吴敏,张涛,等. GH4169高温合金螺栓热锻成形工艺[J]. 锻压技术,2022,47(3):8-22.

Fang J,Wu M,Zhang T,et al. Hot forging process on superalloy GH4169 bolt[J]. Forging & Stamping Technology,2022,47(3):8-22.

[3]金宏, 殷银银,刘乐,等. 航天用超大规格GH4169高温合金螺栓热镦工艺[J]. 锻压技术,2022,47(6):55-60.

Jin H,Yin Y Y,Liu L,et al. Hot upsetting process of super-sized superalloy GH4169 bolts for aerospace[J]. Forging & Stamping Technology,2022,47(6):55-60.

[4]肖刚锋, 张义龙,夏琴香,等. 镍基高温合金锥筒形件拉深旋压时成形质量及组织性能研究[J]. 锻压技术,2021,46(9):190-196.

Xiao G F,Zhang Y L,Xia Q X,et al. Research on forming quality,microstructure and properties for Ni-based superalloy conical-cylindrical parts during deep-drawing spinning [J]. Forging & Stamping Technology,2021,46(9):190-196.

[5]王岩, 谷宇,王珏,等. 铸态镍基高温合金GH4698热变形行为[J]. 锻压技术,2021,46(11):250-254.

Wang Y,Gu Y,Wang J,et al. Hot deformation behavior of as-cast Ni-based superalloy GH4698[J]. Forging & Stamping Technology,2021,46(11):250-254.

[6]Powell A, Bond B,O′Brien C, et al. Development of a new cast and wrought alloy (Rene 65) for high temperature disk applications[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. USA,2014.

[7]O′Brien C, Heaney J, Russell J, et al. Rene65 billet material for forged turbine components[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. USA, 2014.

[8]Wojcik T, Rath M, Kozeschnik E. Charaterisation of secondary phases in Ni-based superalloy Rene 65[J]. Materials Science and Technology, 2018, 34: 1-7.

[9]赵光普, 黄烁,张北江,等. 新一代镍基变形高温合金GH40654A的组织控制与力学性[J]. 钢铁研究学报,2015,27(2):40-47.

Zhao G P, Huang S, Zhang B J, et al. Microstructure control and mechanical properties of the newest nickel-based wrought superalloy GH4065A [J]. Journal of Iron and Steel Research, 2015, 27(2):40-47.

[10]杜金辉, 赵光普,邓群,等. 中国变形高温合金研制进展[J].航空材料学报,2016, 36(3): 27-39.

Du J H, Zhao G P, Deng Q, et al. Develop of wrought superalloy in China[J]. Journal of Aeronautical Materials, 2016, 36(3): 27-39.

[11]刘巧沐, 黄顺洲,刘佳,等. 高温材料研究进展及其在航空发动机上的应用[J].燃气涡轮试验与研究,2014, 27(4): 51-56.

Liu Q M, Huang S Z, Liu J, et al. Progress and application of high temperature structural materials on aero-engine[J]. Gas Turbine Experiment and Research, 2014, 27(4): 51-56.

[12]张北江, 赵光普,张文云,等. 高性能涡轮盘材料GH4065及其先进制备技术研究[J].金属学报,2015, 51(10): 1227-1234.

Zhang B J, Zhao G P, Zhang W Y, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing technologies[J]. Acta Metallurgica Sinica, 2015, 51(10): 1227-1234.

[13]张北江, 黄烁,张文云,等. 变形高温合金盘材及其制备技术研究进展[J],金属学报,2019, 55(9): 1095-1114.

Zhang B J, Huang S, Zhang W Y, et al. Recent development of nickel-based disc alloys and corresponding cast-wrought processing techniques[J]. Acta Metallurgica Sinica, 2019, 55(9): 1095-1114.

[14]Laurence A, Cormier J, Villechaise P, et al. Impact of the solution cooling rate and of thermal aging on the creep properties of the new cast & wrought René 65 Ni-based superalloy[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. TMS, Pittsburgh:  2014.

[15]Olufayo O A, Che H, Songmene V, et al. Machinability of Rene 65 superalloy[J]. Materials, 2019, 12: 2034.

[16]Gourdin S, Cormier J, Henaff G, et al. Assessment of specific contribution of residual stress generated near surface anomalies in the high temperature fatigue life of a René 65 superalloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40: 69-80.

[17]Charpagne M A, Vennegues P, Billot T, et al. Evidence of multimicrometric coherent γ′ precipitates in a hot-forged γ-γ′ nickel-based superalloy[J]. Journal of Microscopy, 2016, 263:106-112.

[18]Minisandram R S, Jackman L A, Russell J L, et al. Recrystallization response during thermo-mechanical processing of alloy René 65 billet[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. TMS, Pittsburgh: 2014.

[19]Zhang B J, Zhao G P, Zhang W Y, et al. Deformation mechanisms and microstructural evolution of γ+γ′ aggregates generated during thermomechanical processing of nickel-base superalloys[A]. Proceedings of the 13th International Symposium on Superalloys[C].USA,2016.

[20]董建新. 镍基合金管材挤压及组织控制[M].北京:冶金工业出版社,2014.

Dong J X. Extrusion and Microstructure Control of Nickel Based Alloy Pipe [M]. Beijing: Metallurgical Industry Press, 2014.

[21]Koul A K, Immarigeon J-P A. Modelling of plastic flow in coarse grained nickel-base superalloy compacts under isothermal forging conditions[J]. Acta Metallurgica, 1987, 35:1791-1805.

[22]Kaibyshev O A, Utyashev F Z, Valitov V A. Effect of γ′-phase content on preparation schedule for structure and superplasticity of high-temperature nickel alloys[J]. Metal Science and Heat Treatment,1989, 31(7):526-532.

[23]Valitov V A, Salishchev G, Mukhtarov S. Superplasticity of nickel-based alloys with sub-microcrystalline structure[A].Materials Science Forum[C]. Trans.Tech.Publications, Switzerland: 1997.

[24]Valitov V A,Utyashev F Z,  Mukhtarov S. Formation of microcrystalline structures and superplastic properties of nickel based alloys[A]. Materials Science Forum[C]. Trans.Tech.Publications, Switzerland: 1999.

[25]Wen J T, Pollock T M. Deformation and strain storage mechanisms during high-temperature compression of a powder metallurgy nickel-base superalloy[J]. Metallurgical and Materials Transactions A, 2010, 41A(8): 2002-2009.

[26]Robson J D. Modeling competitive continuous and discontinuous precipitation[J]. Acta Materialia, 2013, 61:7781-7790.

[27]Bozzolo N, Soua N, Logé R E. Evolution of microstructure and twin density during thermomechanical processing in a γ-γ′ nickel-based superalloy[J]. Acta Materialia, 2012, 60: 5056-5066.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com