Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Crushing mechanism on coarse second-phase particles for 2219 aluminum alloy
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TB31
year,vol(issue):pagenumber:2023,48(9):248-256
Abstract:

  The compression tests at high temperature and medium-low temperature of 2219 aluminum alloy after multi-directional forging were carried out, the crushing behavior of elongated and equiaxed second-phase particles for 2219 aluminum alloy was investigated, and the crushing and refining mechanism was revealed. The research results show that when compressed bidirectionally at high temperature (T=510 ℃), the elongated particles have better plasticity, and the particles are bent when deformed and break when the bending limit is exceeded. When T drops to 240 ℃, the brittleness of the elongated particles increases, and a large number of particles are broken by brittleness to improve the refining effect significantly. The particles are mainly equiaxed, and the area fraction of equiaxed particles to the total crystal phase increases from 64% at high temperature to 79%. Due to the difficulty of breaking equiaxed particles, when high temperature compression deformation, the particle periphery is gradually dissolved and the size is reduced mainly through the formation and migration behaviors of dislocation, when medium-low temperature compression deformation, the recovery and migration of dislocation in the matrix are slow and easy to accumulate and entangle near the particles, the equiaxed particles mainly rely on the matrix strengthening effect caused by dislocation to achieve crushing and improve the crushing effect.

Funds:
国家自然科学基金资助项目(52005518);广西自然科学基金资助项目(2020GXNSFAA159156);广西高校中青年教师科研基础能力提升项目(2023KY1152)
AuthorIntro:
作者简介:毛献昌(1982-),男,博士,副教授 E-mail:mxchlhy@163.com 通信作者:林土淦(1988-),男,硕士,讲师 E-mail:940567356@qq.com
Reference:

 [1]安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性 [J]. 材料工程, 2020, 48(4): 123-130.


An L H, Yuan S J. Deformation uniformity of 2219 aluminum alloy thinwalled curved parts in stretch forming process [J]. Journal of Materials Engineering, 2020, 48(4): 123-130.

[2]Zhang D, Wang G, Wu A, et al. Study on the inconsistency in mechanical properties of 2219 aluminium alloy TIGwelded joints [J]. Journal of Alloys and Compounds, 2019, 777: 1044-1053.

[3]Babu S, Panigrahi S, JanakiRam G, et al. Cold metal transfer welding of aluminium alloy AA 2219 to austenitic stainless steel AISI 321 [J]. Journal of Materials Processing Technology, 2019, 266: 155-164.

[4]于华民, 董方, 吴运新. 大型铝合金C形截面环轧制过程数值模拟和轧制区成形规律分析 [J]. 锻压技术, 2021, 46(11): 197-206.

Yu H M, Dong F, Wu Y X. Numercal simulation on rolling process and analysis on rolling zone forming law for large aluminum alloy Cshaped corsssection ring [J]. Forging & Stamping Technology, 2021, 46(11): 197-206.

[5]安立辉, 苑世剑. 2219铝合金薄壁曲面拉伸件的变形与强化规律 [J]. 中国有色金属学报, 2020, 30(2): 283-290.

An L H, Yuan S J. Deformation and strength distribution of stretch formed 2219 aluminum alloy thinwalled curved parts [J]. The Chinese Journal of Nonferrous Metals, 2020, 30(2): 283-290.

[6]Zeng X, Fan X G, Li H W, et al. Grain refinement in hot working of 2219 aluminium alloy: On the effect of deformation mode and loading path [J]. Materials Science & Engineering A, 2020, 794: 139905.

[7]马云龙, 高艺航, 陈送义, 等. Fe含量对2219铝合金锻件焊接组织与性能的影响 [J]. 宇航材料工艺, 2020, 4: 77-81.

Ma Y L, Gao Y H, Chen S Y, et al. Effect of Fe content on welding microstructure and properties of 2219 aluminum alloy [J]. Aerospace Materials & Technology, 2020, 4: 77-81.

[8]张曼曼, 朱凯, 张文学, 等. 铸态2219铝合金热压缩变形组织演变规律 [J]. 锻压技术, 2021, 46(1): 191-196.

Zhang M M, Zhu K, Zhang W X, et al. Microstructure evolution law of ascast 2219 aluminum alloy in hot compression deformation[J]. Forging & Stamping Technology, 2021, 46(1): 191-196.

[9]He H L, Yi Y P, Huang S Q, et al. An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties [J]. Journal of Materials Science & Technology, 2019, 35: 55-63.

[10]阳代军, 张文学, 徐坤和, 等. 9 m级超大直径2219铝合金整体环轧制工艺及质量分析 [J]. 热加工工艺, 2019, 48(5): 189-193.

Yang D J, Zhang W X, Xu K H, et al. Rolling process and quality analysis of 9 m ultralarge diameter 2219 aluminum alloy integral ring [J]. Hot Working Technology, 2019, 48(5): 189-193.

[11]文嘉利, 高志华, 高明伟, 等. 电磁搅拌对2219铝合金铸锭组织及环轧性能的影响 [J]. 特种铸造及有色合金, 2020, 40(8): 861-864.

Wen J L, Gao Z H, Gao M W, et al. Effects of electromagnetic stirring on microstructures and ring rolling properties of 2219 aluminium alloy ingot [J]. Special Casting & Nonferrous Alloys, 2020, 40(8): 861-864.

[12]李康, 李晓谦, 李瑞卿. 超声铸造2219铝合金的固溶工艺和Al2Cu相的演变 [J]. 热加工工艺, 2019, 48(2): 167-170.

Li K, Li X Q, Li R Q. Solid solution process and Al2Cu phase evolution of ultrasonic casting 2219 aluminum alloy [J]. Hot Working Technology, 2019, 48(2): 167-170.

[13]Guo W F, Yi Y P, Huang S Q, et al. Effects of deformation temperature on the evolution of secondphase and mechanical properties of large 2219 AlCu alloy rings [J]. Materials Characterization, 2020, 160: 110094.

[14]徐道芬, 陈送义, 余芳, 等. 2219 大规格铸锭成分偏析行为及多向锻-固溶时效热处理对铸锭组织和性能的影响 [J]. 中国有色金属学报, 2017, 27(12): 2451-2459.

Xu D F, Chen S Y, Yu F, et al. Composition segregation behavior of 2219 aluminum alloy ingot with big size and effect of multiaxial forging and solutionaging treatment on microstructure and mechanical properties of ingot [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(12): 2451-2459.

[15]He H L, Yi Y P, Huang S Q, et al. Effects of deformation temperature on secondphase particles and mechanical properties of 2219 AlCu alloy [J]. Materials Science & Engineering A, 2018, 712: 414-423.

[16]钟贞涛, 李瑞卿, 李晓谦, 等. 超声处理对2219大规格铝锭微观组织与宏观偏析的影响 [J]. 工程科学学报, 2017, 39(9):1347-1354.

Zhong Z T, Li R Q,Li X Q,  et al. Effect of ultrasonication on the microstructure and macrosegregation of a large 2219 aluminum ingot [J]. Chinese Journal of Engineering, 2017, 39(9):1347-1354.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com