[1]杨晶晶. 水轮机用0Cr13Ni5Mo不锈钢焊接工艺研究 [D]. 成都:西南交通大学, 2018.
Yang J J. Study on 0Cr13Ni5Mo Stainless Steel Welding Process for Hydroturbine [D].Chengdu:Southwest Jiaotong University, 2018.
[2]谭晓霞. 大型冲击式转轮用国产04Cr13Ni5Mo马氏体不锈钢锻件研究现状 [J]. 材料导报, 2022, 36(S2): 422-425.
Tan X X. Research status of domestic 04Cr13Ni5Mo martensitic stainless steel forgings for runner of large impact hydropower unit [J]. Materials Reports, 2022, 36(S2): 422-425.
[3]张磊, 陈小明, 吴燕明, 等. 水轮机过流部件抗磨蚀涂层技术研究进展 [J]. 材料导报, 2017, 31(17): 75-83.
Zhang L, Chen X M, Wu Y M, et al. Technological advance in coatings for abrasion-cavitation erosion protection of hydraulic turbine flow-parts [J]. Materials Reports, 2017, 31(17): 75-83.
[4]李霞, 杨效田. 表面工程技术的应用及发展 [J]. 机械研究与应用, 2015, 28(5): 202-204.
Li X, Yang X T. Application and development of surface engineering technology [J]. Mechanical Research & Application, 2015, 28(5): 202-204.
[5]秦真波, 吴忠, 胡文彬. 表面工程技术的应用及其研究现状 [J]. 中国有色金属学报, 2019, 29(9): 2192-2216.
Qin Z B, Wu Z, Hu W B. Application and progress of surface engineering technology [J]. The Chinses Journal of Nonferrous Metals, 2019, 29(9): 2192-2216.
[6]孟成, 赵运才, 张新宇, 等. 超声滚压表面强化技术的研究现状与应用 [J]. 表面技术, 2022, 51(8): 179-202.
Meng C, Zhao Y C, Zhang X Y, et al. Research and application of ultrasonic rolling surface strengthening technology [J]. Surface Technology, 2022, 51(8): 179-202.
[7]陶冠羽, 骆小双, 孙清云, 等. 超声表面滚压技术及其组合工艺现状 [J]. 表面技术, 2023, 52(2): 122-134.
Tao G Y, Luo X S, Sun Q Y, et al. State of the art of ultrasonic surface rolling technology and its combination technology [J]. Surface Technology, 2023, 52(2): 122-134.
[8]Zhang Y L, Huang L M, Lu F, et al. Effects of ultrasonic surface rolling on fretting wear behaviors of a novel 25CrNi2MoV steel [J]. Materials Letters, 2021, 284: 128955.
[9]谭辉, 靳刚, 阎兵, 等. 超声滚压工艺对6061铝合金平面件表面粗糙度的影响 [J]. 天津职业技术师范大学学报, 2022, 32(4): 8-12,17.
Tan H, Jin G, Yan B, et al. Effect of ultrasonic rolling process on surface roughness of 6061 aluminum alloy flat parts [J]. Journal of Tianjin University of Technology and Education, 2022, 32(4): 8-12,17.
[10]Wang F, Pan Y Z, Men X H, et al. Effect of static pressure on friction and wear behavior of aluminum alloy surface by ultrasonic rolling [A]. Earth and Environmental Science, 4th International Conference on Energy Equipment Science and Engineering [C]. Xi′an: University of Technology: IOP Publishing,2019.
[11]李凤琴, 赵波. 超声加工滚压力对钛合金表层特性的影响 [J]. 表面技术, 2019, 48(10): 34-40.
Li F Q, Zhao B. Effect of ultrasonic processing burnishing pressure on titanium alloy surface properties [J]. Surface Technology, 2019, 48(10): 34-40.
[12]张飞. 超声表面滚压工艺参数对45钢摩擦磨损性能的影响研究 [D]. 赣州:江西理工大学, 2018.
Zhang F. Research on the Effect of Ultrasonic Surface Rolling Extrusion Parameters on Friction and Wear Properties of 45 Steel [D].Ganzhou: Jiangxi University of Science and Technology, 2018.
[13]王炳英, 尹宇, 侯振波, 等. X80钢超声表面滚压加工残余应力场的有限元模拟 [J]. 机械工程材料, 2015, 39(9): 80-83.
Wang B Y, Yin Y, Hou Z B, et al. Finite element modelling of residual stress field on X80 steel after ultrasonic surface rolling process [J].Materials for Mechanical Engineering, 2015, 39(9): 80-83.
[14]Li F Q, Zhao B, Lan S L, et al. Experiment and simulation of the effect of ultrasonic rolling on the surface properties of Ti-6Al-4V [J]. The International Journal of Advanced Manufacturing Technology, 2020, 106: 1893-1900.
[15]王婷, 王东坡, 刘刚, 等. 40Cr超声表面滚压加工纳米化 [J]. 机械工程学报, 2009, 45(5): 177-183.
Wang T, Wang D P, Liu G, et al. 40Cr nano-crystallization by ultrasonic surface rolling extrusion processing [J]. Journal of Mechanical Engineering, 2009, 45(5): 177-183.
[16]张飞, 上官绪超. 表面超声滚压处理对AISI304不锈钢疲劳性能的影响 [J]. 热加工工艺, 2017, 46(16): 136-140.
Zhang F, Shangguan X C. Effect of surface ultrasonic rolling processing on fatigue properties of AISI304 austenite stainless steel [J]. Hot Working Technology, 2017, 46(16): 136-140.
[17]Johnson G R,Cook W H. A constitutive model and data for metal subjected to large strains, high strain rates, and high temperatures [A]. Proceedings of 7th International Symposium on Ballistic [C]. Netherland,1983.
[18]Murugesan M, Jung D W. Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications [J]. Materials, 2019, 12(4): 609-627.
[19]Xie H F, Zhang X G, Miao F C, et al. Separate calibration of Johnson-Cook model for static and dynamic compression of a dnan-based melt-cast explosive [J]. Materials, 2022, 15(17): 5931-5950.
[20]Zhang L N, Li P N, Tang S W, et al. Mechanical behaviors analysis and Johnson-Cook model establishment of 4Cr13 stainless steel [J]. Key Engineering Materials, 2014,589:45-51.
[21]刘胜军. 用Ra计算机械加工表面粗糙度值 [J]. 机械工艺师, 1988, (10): 24-25.
Liu S J. Calculate the roughness value of machined surface with Ra [J]. Mechanical Technologist, 1988, (10): 24-25.
[22]赵晓亮. 陶瓷磨削表面粗糙度预测模型与实验研究 [D].大连:大连理工大学, 2009.
Zhao X L. The Prediction Model and Experiment Research of Ceramics Surface Roughness [D].Dalian:Dalian University of Technology, 2009.
|