Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of static pressure on residual stress and roughness during ultrasonic rolling for 0Cr13Ni5Mo stainless steel
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TH161
year,vol(issue):pagenumber:2023,48(10):161-168
Abstract:

  In order to improve the comprehensive properties of 0Cr13Ni5Mo stainless steel, ultrasonic rolling technology was used to process it, and the influences of different static pressures on its residual stress and roughness during ultrasonic rolling were studied by experiment and numerical simulation methods. The results show that in the static pressure range of 50-250 N, the residual stress increases with the increasing of static pressure, and the error between the simulation and test results remains within 9%. Under the static pressure of 250 N, the maximum residual compressive stress measured by the test is -579.15 MPa. The simulation results show that the residual stress distribution width increases with the increasing of static pressure, but the growth rate gradually decreases, and the maximum residual stress distribution width of 8.5 mm is obtained under the static pressure of 250 N. Under the static pressure of 50 and 100 N, the residual stress depth is approximately 1 mm. Under the static pressure of 150, 200 and 250 N, the residual compressive stress still exists 3 mm away from the surface. Thus, in order to obtain higher residual compressive stress in the material while considering economic benefits, it is recommended to use 150 N static pressure. In the static pressure range of 50-250 N, with the gradual increase of static pressure, the surface roughness of material gradually decreases. Under the static pressure of 250 N, the surface roughness of material decreases by approximately 89% compared to the original surface. The simulation results show that the optimal static pressure parameter range to obtain smaller roughness value is 200-300 N.

Funds:
国家自然科学基金资助项目(U1904185);河南省青年骨干教师(2020GGJS071)
AuthorIntro:
陈云峰(1996-),男,硕士研究生 E-mail:18437915953@163.com
Reference:

 
[1]杨晶晶. 水轮机用0Cr13Ni5Mo不锈钢焊接工艺研究
[D]. 成都:西南交通大学, 2018.


Yang J J. Study on 0Cr13Ni5Mo Stainless Steel Welding Process for Hydroturbine
[D].Chengdu:Southwest Jiaotong University, 2018.


[2]谭晓霞. 大型冲击式转轮用国产04Cr13Ni5Mo马氏体不锈钢锻件研究现状
[J]. 材料导报, 2022, 36(S2): 422-425.

Tan X X. Research status of domestic 04Cr13Ni5Mo martensitic stainless steel forgings for runner of large impact hydropower unit
[J]. Materials Reports, 2022, 36(S2): 422-425.


[3]张磊, 陈小明, 吴燕明, 等. 水轮机过流部件抗磨蚀涂层技术研究进展
[J]. 材料导报, 2017, 31(17): 75-83.

Zhang L, Chen X M, Wu Y M, et al. Technological advance in coatings for abrasion-cavitation erosion protection of hydraulic turbine flow-parts
[J]. Materials Reports, 2017, 31(17): 75-83.


[4]李霞, 杨效田. 表面工程技术的应用及发展
[J]. 机械研究与应用, 2015, 28(5): 202-204.

Li X, Yang X T. Application and development of surface engineering technology
[J]. Mechanical Research & Application, 2015, 28(5): 202-204.


[5]秦真波, 吴忠, 胡文彬. 表面工程技术的应用及其研究现状
[J]. 中国有色金属学报, 2019, 29(9): 2192-2216.

Qin Z B, Wu Z, Hu W B. Application and progress of surface engineering technology
[J]. The Chinses Journal of Nonferrous Metals, 2019, 29(9): 2192-2216.


[6]孟成, 赵运才, 张新宇, 等. 超声滚压表面强化技术的研究现状与应用
[J]. 表面技术, 2022, 51(8): 179-202.

Meng C, Zhao Y C, Zhang X Y, et al. Research and application of ultrasonic rolling surface strengthening technology
[J]. Surface Technology, 2022, 51(8): 179-202.


[7]陶冠羽, 骆小双, 孙清云, 等. 超声表面滚压技术及其组合工艺现状
[J]. 表面技术, 2023, 52(2): 122-134.

Tao G Y, Luo X S, Sun Q Y, et al. State of the art of ultrasonic surface rolling technology and its combination technology
[J]. Surface Technology, 2023, 52(2): 122-134.


[8]Zhang Y L, Huang L M, Lu F, et al. Effects of ultrasonic surface rolling on fretting wear behaviors of a novel 25CrNi2MoV steel
[J]. Materials Letters, 2021, 284: 128955.


[9]谭辉, 靳刚, 阎兵, 等. 超声滚压工艺对6061铝合金平面件表面粗糙度的影响
[J]. 天津职业技术师范大学学报, 2022, 32(4): 8-12,17.

Tan H, Jin G, Yan B, et al. Effect of ultrasonic rolling process on surface roughness of 6061 aluminum alloy flat parts
[J]. Journal of Tianjin University of Technology and Education, 2022, 32(4): 8-12,17.


[10]Wang F, Pan Y Z, Men X H, et al. Effect of static pressure on friction and wear behavior of aluminum alloy surface by ultrasonic rolling
[A]. Earth and Environmental Science, 4th International Conference on Energy Equipment Science and Engineering
[C]. Xi′an: University of Technology: IOP Publishing,2019.


[11]李凤琴, 赵波. 超声加工滚压力对钛合金表层特性的影响
[J]. 表面技术, 2019, 48(10): 34-40.

Li F Q, Zhao B. Effect of ultrasonic processing burnishing pressure on titanium alloy surface properties
[J]. Surface Technology, 2019, 48(10): 34-40.


[12]张飞. 超声表面滚压工艺参数对45钢摩擦磨损性能的影响研究
[D]. 赣州:江西理工大学, 2018.

Zhang F. Research on the Effect of Ultrasonic Surface Rolling Extrusion Parameters on Friction and Wear Properties of 45 Steel
[D].Ganzhou: Jiangxi University of Science and Technology, 2018.


[13]王炳英, 尹宇, 侯振波, 等. X80钢超声表面滚压加工残余应力场的有限元模拟
[J]. 机械工程材料, 2015, 39(9): 80-83.

Wang B Y, Yin Y, Hou Z B, et al. Finite element modelling of residual stress field on X80 steel after ultrasonic surface rolling process
[J].Materials for Mechanical Engineering, 2015, 39(9): 80-83.


[14]Li F Q, Zhao B, Lan S L, et al. Experiment and simulation of the effect of ultrasonic rolling on the surface properties of Ti-6Al-4V
[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106: 1893-1900.


[15]王婷, 王东坡, 刘刚, 等. 40Cr超声表面滚压加工纳米化
[J]. 机械工程学报, 2009, 45(5): 177-183.

Wang T, Wang D P, Liu G, et al. 40Cr nano-crystallization by ultrasonic surface rolling extrusion processing
[J]. Journal of Mechanical Engineering, 2009, 45(5): 177-183.


[16]张飞, 上官绪超. 表面超声滚压处理对AISI304不锈钢疲劳性能的影响
[J]. 热加工工艺, 2017, 46(16): 136-140.

Zhang F, Shangguan X C. Effect of surface ultrasonic rolling processing on fatigue properties of AISI304 austenite stainless steel
[J]. Hot Working Technology, 2017, 46(16): 136-140.


[17]Johnson G R,Cook W H. A constitutive model and data for metal subjected to large strains, high strain rates, and high temperatures
[A]. Proceedings of 7th International Symposium on Ballistic
[C]. Netherland,1983.


[18]Murugesan M, Jung D W. Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications
[J]. Materials, 2019, 12(4): 609-627.


[19]Xie H F, Zhang X G, Miao F C, et al. Separate calibration of Johnson-Cook model for static and dynamic compression of a dnan-based melt-cast explosive
[J]. Materials, 2022, 15(17): 5931-5950.


[20]Zhang L N, Li P N, Tang S W, et al. Mechanical behaviors analysis and Johnson-Cook model establishment of 4Cr13 stainless steel
[J]. Key Engineering Materials, 2014,589:45-51.


[21]刘胜军. 用Ra计算机械加工表面粗糙度值
[J]. 机械工艺师, 1988, (10): 24-25.

Liu S J. Calculate the roughness value of machined surface with Ra
[J]. Mechanical Technologist, 1988, (10): 24-25.


[22]赵晓亮. 陶瓷磨削表面粗糙度预测模型与实验研究
[D].大连:大连理工大学, 2009.

Zhao X L. The Prediction Model and Experiment Research of Ceramics Surface Roughness
[D].Dalian:Dalian University of Technology, 2009.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com