Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Optimization of die forging process parameters for connecting rod
Authors: Jia Dewen1  Sun Yan1  Deng Wei1  Ji Huiping2  Hao Li′na2 
Unit: (1.Yunnan Key Laboratory of Internal Combustion Engine  Kunming University of Science and Technology  Kunming 650500  China   2.Yunnan Xiyi Industry Co.  Ltd.  Kunming 650114  China) 
KeyWords: connecting rod  response surface methodology  wear depth forming load  Multi-Island genetic algorithm 
ClassificationCode:TG316
year,vol(issue):pagenumber:2024,49(2):1-13
Abstract:

 In order to improve the forming quality and material utilization rate of connecting rod forgings and increase the service life of die, the billet structure was modified according to the shape and dimension of connecting rod forgings, and the influences of the interaction of different process parameters on the pre-forging forming load, final forging damage value and final forging die wear depth were investigated based on the response surface method. Then, multi-objective optimization was carried out by combining Multi-Island genetic algorithm. The results show that the forming quality of forgings is good after the modification of billet structure, the volume of billet is 65354.1 mm3, and the material utilization rate is increased by 23.5%. Through variance analysis, it can be seen that the influence degree of each process parameter on the pre-forging forming load is billet temperature > friction factor > upper die velocity > die temperature, the influence degree on the damage value of final forgings is friction factor > billet temperature > upper die velocity > die temperature, and the influence degree on the die wear depth is billet temperature > friction factor > die temperature > upper die velocity. The optimized forming load is 3210 kN, which is reduced by 51.7%, the damage value of forgings is 0.547, which is reduced by 12.3%, and the die wear depth is 0.0389 μm, which is reduced by 22.4%. Thus, the optimization effect is significant, which can provide reference for the optimization of die forging process parameters and the actual production of connecting rod. 

 
Funds:
云南省重大科技专项计划(202202AC080006)
AuthorIntro:
作者简介:贾德文(1977-),男,博士,副教授 E-mail:27546658@qq.com 通信作者:邓伟(1983-),男,学士,教授级高工 E-mail:1323364897@qq.com
Reference:

 
[1]齐莉, 于晓鹏. 基于BP神经网络的连杆锻压工艺优化
[J]. 热加工工艺, 2020, 49(13): 96-99.


 

Qi L, Yu X P. Optimization of connecting rod forging process based on BP neural network
[J]. Hot Working Technology, 2020, 49(13): 96-99.

 


[2]王相钧, 王大勇, 王培涛, 等. 连接杆头模锻工艺参数优化研究
[J]. 塑性工程学报, 2019, 26(6): 36-41.

 

Wang X J, Wang D Y, Wang P T, et al. Process parameters optimization of die forging for connecting rod head
[J].Journal of Plasticity Engineering, 2019,26(6):36-41.

 


[3]Singh A, Acharya G D, Saradava B J. Simulation and experimental validation of EN 19 forged crankshaft for surface crank in close die forging
[J]. International Journal of Advance Research and Innovative Ideas in Education, 2017, 3(2): 4682-4687.

 


[4]刘江, 徐皓. 船用12型发动机连杆锻模设计及其锻造工艺验证实例
[J]. 锻压技术, 2022, 47(9): 18-22.

 

Liu J, Xu H. Design on forging die of connecting rod for type-12 marine engine and forging process verification example
[J]. Forging & Stamping Technology, 2022, 47(9): 18-22.

 


[5]Raj M P, Kumar M, Pramanick A K. Yield improvement in hot forging of differential spider
[J]. Materials Today: Proceedings, 2019, 24(9-10): 700-707.

 


[6]Jajimoggala S. Optimization of hot extrusion process parameters using taguchi based grey relation analysis: An experimental approach
[J]. International Journal of Materials Forming and Machining Processes, 2019, 6(1): 1-18.

 


[7]高冲, 刘淑梅, 霍文军. 基于响应面法的铝合金连杆锻造工艺优化
[J]. 热加工工艺, 2020, 49(11): 97-100.

 

Gao C, Liu S M, Huo W J. Optimization of forging process for aluminum alloy connecting rods based on response surface method
[J]. Hot Working Technology, 2020, 49(11): 97-100.

 


[8]殷剑,黎诚,金康,等.基于响应面法和修正Archard磨损理论的汽车前下摆臂热锻模具应力与磨损分析
[J].锻压技术,2022,47(6):231-238.

 

Yin J, Li C, Jin K,et al. Stress and wear analysis on hot forging mold for automobile front lower swing 

arm based on response surface method and modified Archard wear theory
[J]. Forging & Stamping Technology, 2022,47(6):231-238.

 


[9]蔺永诚, 陈明松, 钟掘. 42CrMo钢的热压缩流变应力行为
[J]. 中南大学学报:自然科学版, 2008,(3): 549-553.

 

Lin Y C, Chen M S, Zhong J. Flow stress behaviors of 42CrMo steel during hot compression
[J]. Journal of Central South University:Science and Technology, 2008,(3): 549-553.

 


[10]Groche P, Hess B. Friction control for accurate cold forged parts
[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1): 285-288.

 


[11]Lee R S, Jou J L. Application of numerical simulation for wear analysis of warm forging die
[J]. Journal of Materials Processing Technology, 2003, 140(1-3): 43-48.

 


[12]Xu H W, Jing Y B, Qi X M, et al. Automobile connecting rod forging optimization based on DEFORM and orthogonal experiment
[J]. IOP Conference Series: Materials Science and Engineering,2019,692.

 


[13]孟凡响. 复杂钩舌锻件近净成形工艺预成形设计及优化
[D]. 长春:吉林大学, 2020.

 

Meng F X. Preforming Operation and Optimization for Nearnetshape Forming Process of Complex Coupler Knuckle
[D]. Changchun:Jilin University, 2020.

 


[14]万亚飞. 发动机连杆预锻过程数值模拟与工艺优化
[D]. 长春:长春理工大学, 2014.

 

Wan Y F. Numerical Simulation and Optimization of Engine Connecting Rod Preforging Process
[D]. Changchun:Changchun University of Technology, 2014.

 


[15]闫洪. 锻造工艺与模具设计
[M]. 北京: 机械工业出版社, 2011.

 

Yan H. Forging Process and Die Design
[M]. Beijing: China Machine Press, 2011.

 


[16]Owolabi U R, Usman A M, Kehinde J A. Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology
[J]. Journal of King Saud UniversityEngineering Sciences,2018,30(1): 138-147.

 


[17]刘惠,刘腾飞,陈宗强,等.基于试验设计和响应曲面法的大型带筋薄壁铝型材挤压工艺优化
[J].锻压技术,2022,47(5):144-152.

 

Liu H, Liu T F, Chen Z Q,et al. Optimization on extrusion process for large reinforced thinwalled aluminum profile based on experimental design and response surface method
[J]. Forging & Stamping Technology, 2022,47(5):144-152.

 


[18]Liu C W, Wu M, Wu P, et al. Optimization of cogging torque in permanent magnet motors based on parameter sensitivity and Kriging model
[J]. Journal of Computational Methods in Sciences and Engineering,2021,21(6):1957-1971.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com