Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Micro-folding defect analysis and improvement measures on indenting-heading for cartridge case
Authors: Liu Xin  Guo Muji  Liu Dong  Tao Zhiyong  Li Xiong  Zhang Gaojuan 
Unit: Chongqing Changjiang Electrical Appliances Industries Group Co.  Ltd. 
KeyWords: cartridge case  indenting heading  micro-folding metal flow die 
ClassificationCode:TG376
year,vol(issue):pagenumber:2024,49(3):152-160
Abstract:

For a certain cartridge case, aiming at the problem of micro-folding in the side wall of bottom fire chamber after the bottom forming of cartridge case in the initial design scheme, the micro-folding occurred during the indenting was determined by microstructure observation and numerical simulation, and the causes of micro-folding were clarified. During the indenting process, the radial and axial flow of metal at the partition was significantly faster than that in the inner wall, resulting in a continuous reduction of curvature radius for the fillet at the connection zone between partition and inner wall, until there was a micro-folding defect. At the same time, the micro-folding defect retained and moved down a short distance with the axial flow of metal in the side wall during the heading process, which was consistent with the actual observed position of micro-folding defect. In order to improve the forming quality of cartridge case and avoid the defects, an improved scheme of modifying the dimension of indenting die to improve the metal flow during the indenting process was proposed. The numerical simulation and process test results show that by the improved scheme, there is no micro-folding defect in the indenting and heading cases, and other dimensions meet the design requirements. Thus, the improved scheme can meet the actual production requirements and improve the forming quality of the bottom for the cartridge case.

Funds:
AuthorIntro:
作者简介:刘新(1995-),女,硕士,工程师,E-mail:1324703458@qq.com
Reference:

[1]冉松, 涂集林, 黎梅, 等. 智能制造在枪弹制造行业内的应用[J]. 兵工自动化, 2020, 39(11): 24-26,35.


 

Ran S, Tu J L, Li M, et al. Application of intelligent manufacturing system in ammunition industry [J]. Ordnance Industry Automation, 2020, 39(11): 24-26,35.

 

[2]涂集林, 李登虎, 张亚军, 等. 枪弹大批量定制发展策略研究[J]. 机械, 2021, 48(7): 44-51.

 

Tu J L, Li D H, Zhang Y J, et al. Development strategy of mass customization of ammunition [J]. Machinery, 2021, 48(7): 44-51.

 

[3]李晓光, 魏志芳, 高建中, 等. 枪弹弹壳挤盂组合模新型设计与研究[J]. 兵工自动化, 2016, 35(2): 82-85.

 

Li X G, Wei Z F, Gao J Z, et al. New design and research of bullet casting extrusion combined die [J]. Ordnance Industry Automation, 2016, 35(2):82-85.

 

[4]胡冶昌, 魏志芳, 李晓光, 等. 基于NX高级仿真的弹壳冲盂工序数字化模型研究[J]. 塑性工程学报, 2017, 24(2): 122-127.

 

Hu Y C, Wei Z F, Li X G, et al. Digital model study on the cartridge case extrusion forming based on NX advanced simulation [J]. Journal of Plasticity Engineering, 2017, 24(2):122-127.

 

[5]廖仕军, 吕刚, 薛松, 等. 弹壳底部平底成形工艺优化[J]. 兵器装备工程学报, 2020, 41(11): 182-185,206.

 

Liao S J, Lyu G, Xue S, et al. Study on flattening shaping process-optimized for campaign bullet [J]. Journal of Ordnance Equipment Engineering,2020, 41(11): 182-185,206.

 

[6]刘新, 郭睦基, 李登虎, 等. 弹壳拉深成形工艺分析及模具设计[J]. 锻压技术, 2022, 47(12):81-86.

 

Liu X, Guo M J, Li D H, et al. Process analysis and die design on cartrideg deep drawing [J]. Forging & Stamping Technology, 2022, 47(12):81-86.

 

[7]王玉松. 7050铝合金弹壳成形工艺优化及热处理工艺的研究[D]. 重庆:重庆大学, 2015.

 

Wang Y S. Research on the Heat Treatment Process and Optimization of Forming Process of 7050 Aluminum Alloy Cartridge [D]. Chongqing:Chongqing University, 2015.

 

[8]王兴雷, 冯再新, 姚宇康, 等. 某H70合金弹壳体收口成形工艺数值模拟研究[J]. 特种铸造及有色合金, 2023, 43(5): 595-598.

 

Wang X L, Feng Z X, Yao Y K, et al. Numerical simulation of necking process of a H70 alloy shell body [J]. Special Casting & Nonferrous Alloys, 2023, 43(5): 595-598.

 

[9]邹宇, 王名川, 陈才, 等. 基于有限元方法的弹壳拉深成形工艺结构参数研究[J]. 锻压技术, 2022, 47(11): 123-129.

 

Zou Y, Wang M C, Chen C, et al. Research on structural parameters of deep drawing process for cartridge case based on FEM [J]. Forging & Stamping Technology, 2022, 47(11): 123-129.

 

[10]胡建军, 李小平. DEFORM-3D塑性成形CAE应用教程[M]. 北京:北京大学出版社, 2011.

 

Hu J J,Li X P. Application Tutorial of CAE in Plastic Forming by DEFROM-3D [M]. Beijing: Peking University Press, 2011.

 

[11]胡开元, 王雷刚. 基于响应面法与灰狼优化算法的壳体拉深成形模具优化设计[J]. 锻压技术, 2022, 47(6): 244-250.

 

Hu K Y, Wang L G. Optimization design on shell deep drawing die based on response surface methodology and grey wolf optimization algorithm [J]. Forging & Stamping Technology, 2022, 47(6): 244-250.

 

[12]宋应德. 载重汽车行星齿轮一次冷挤压成形方法研究[D]. 重庆:重庆理工大学, 2023.

 

Song Y D. Research on One-step Cold Extrusion Forming Method of Truck Planetary Gear [D]. Chongqing:Chongqing University of Technology, 2023.

 

[13]梁强. 活塞销冷镦挤成形微折叠缺陷分析及改进措施[J]. 塑性工程学报, 2018, 25(6): 99-104.

 

Liang Q. Micro-folding defect analysis and improvement of cold upsetting-extruding process for piston-pin [J]. Journal of Plasticity Engineering, 2018, 25(6): 99-104.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com