Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Lightweight design on heavy-duty electric CNC screw press body based on Workbench
Authors: Yao Baicheng1  Zhu Yuansheng2 3  Zhao Zhiyou2 3  Zhao Guoyong1  Chen Wei2 3 
Unit: 1.Shandong University of Science and Technology  2.China Forge Intelligent Equipment Design Institute (Qingdao) Co.  Ltd.3.Qingdao Hongda Metal Forming Machinery Co.  Ltd. 
KeyWords: press body  topology optimization  light-weighting  stiffness preloading condition striking condition 
ClassificationCode:TG315
year,vol(issue):pagenumber:2024,49(3):178-185
Abstract:

 Aiming at the problem of heavy press body and waste of materials, for EP-12500 heavy-duty electric CNC screw press body, the method of lightweight design for press body structure was explored. Firstly, the finite element analysis on the press body was conducted based on Workbench, and the non-bear zone where the stress value of press body was far less than the yield strength of material was obtained. Then, the non-bear zone of press body was topologically optimized by topology optimization modules. Finally, with the goal of minimizing the mass, the specific position of material removal for the press body structure was determined to realize the lightweight design of press body structure. The optimization results show that the volume and mass of press body are reduced by 9.65% after optimization, which realizes the lightweight of press body and reduces the manufacturing cost. The maximum deformation amount of press body under the preloading condition is increased by 0.17 mm, and the maximum deformation amount under the striking condition is increased by less than 0.01 mm, which is basically consistent with the original press body deformation. The vertical stiffness of press body under the preloading condition is 8.21 MN·mm-1 , and the vertical stiffness under the striking condition is 13.08 MN·mm-1, which all meet the use requirements. The maximum equivalent stress of press body under the preloading condition is reduced by 2.51%, and the maximum equivalent stress under  the striking condition is reduced by 18.3%, which reduces the impact force borne by the base and improves the service life of base.

Funds:
2022年青岛市科技计划重点研发专项(22-3-2-qljh-10-gx)
AuthorIntro:
作者简介:姚佰成(1999-),男,硕士研究生,E-mail:ybc1234562022@163.com;通信作者:赵国勇(1976-),男,博士,教授,博导,E-mail:zgy709@126.com
Reference:

[1]郭晓心. 青岛宏达:深耕行业 行稳致远[J]. 锻造与冲压,2021,(15):42-45.


 

Guo X X. Qingdao Hongda:Focus on metal forming industry and go forward [J]. Forging & Metalforming, 2021, (15):42-45.

 

[2]朱元胜,栾翼展,朱冠宇. 万吨电动螺旋压力机的研究及应用[J]. 锻压装备与制造技术,2014,49(1):37-39.

 

Zhu Y S, Luan Y Z, Zhu G Y. Research and application of electric screw press with 10000 tons [J]. China Metalforming Equipment & Manufacturing Technology, 2014, 49(1):37-39.

 

[3]徐双,赵至友,赵国勇,等. 重型电动数控螺旋压力机结构设计与有限元分析[J]. 锻压技术,2022,47(6):193-198.

 

Xu S, Zhao Z Y, Zhao G Y, et al. Structural design and finite element analysis of heavy duty electric CNC screw press[J]. Forging & Stamping Technology, 2022, 47(6):193-198.

 

[4]魏凤凯,黄慧,单本军,等. 双点机械压力机机身有限元分析及优化[J]. 锻压装备与制造技术,2020,55(3):26-30.

 

Wei F K, Huang H, Shan B J, et al. Finite element analysis and optimization of frame for the double-point mechanical press [J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(3):26-30.

 

[5]王俊,刘祥,庞秋. 伺服机械压力机机身结构优化设计分析[J]. 精密成形工程,2022,14(7):136-142.

 

Wang J, Liu X, Pang Q. Optimization design and analysis of servo mechanical press frame structure [J]. Journal of Netshape Forming Engineering, 2022, 14(7):136-142.

 

[6]陈聪. 高速压力机机构优化设计及轻量化研究[D]. 大连:大连理工大学,2021. 

 

Chen C. Optimization Design of Mechanism and Frame Structure of High-speed Press [D]. Dalian: Dalian University of Technology, 2021.

 

[7]牛军燕,唐永涛,李正辉,等. 基于ANSYS的带式输送机机架轻量化改进研究[J]. 煤矿机械,2021,42(9):126-128. 

 

Niu J Y, Tang Y T, Li Z H, et al. Research on lightweight improvement of belt conveyor frame based on ANSYS[J]. Coal Mine Machinery, 2021, 42(9):126-128.

 

[8]徐双,赵至友,赵国勇,等. 基于多项式拟合算法的重型电动数控螺旋压力机机身的轻量化[J]. 锻压技术,2022,47(12):154-160.

 

Xu S, Zhao Z Y, Zhao G Y, et al. Lightweighting of heavy-duty electric CNC screw press body based on polynomial fitting algorithm[J]. Forging & Stamping Technology, 2022, 47(12):154-160.

 

[9]Zhao X H, Liu Y X, Hua L, et al. Finite element analysis and topology optimization of a 12000 kN fine blanking press frame[J]. Structural and Multidisciplinary Optimization, 2016, 54(2):375-389.

 

[10]张雷,赵宏科,赵志鹏,等. 175 MN精密模锻压机集成建模分析技术[J]. 机械设计,2018,35(S1):418-420.

 

Zhang L, Zhao H K, Zhao Z P, et al. 175 MN of precision die forging press integration modeling analysis technology [J]. Journal of Machine Design, 2018, 35(S1):418-420.

 

[11]周党兰,徐孟诚,谈扬,等. 基于Workbench的机械压力机上横梁有限元分析及优化[J]. 锻压装备与制造技术,2023,58(1):21-24.

 

Zhou D L, Xu M C, Tan Y, et al. Finite element analysis and optimization of upper beam of mechanical press based on Workbench[J]. China Metalforming Equipment & Manufacturing Technology, 2023, 58(1):21-24.

 

[12]杨勇,崔陈晨,解培玉,等. 晶硅磨床关键零部件仿真分析与拓扑优化[J]. 精密制造与自动化,2021,227(3):7-10,21.

 

Yang Y, Cui C C, Xie P Y, et al. Simulation analysis and topology optimization of key parts of crystalline silicon grinder [J]. Precise Manufacturing & Automation, 2021, 227(3):7-10,21.

 

[13]谭群燕,沈铖,丁明明,等. 基于最优拓扑概念构型的压力机机身精度优化[J]. 锻压技术,2023,48(4):186-192.

 

Tan Q Y, Shen C, Ding M M, et al. Precision optimization on press body based on optimal topological conceptual configuration [J]. Forging & Stamping Technology, 2023, 48(4):186-192.

 

[14]张瑞,赵婷婷,罗功波. 伺服直驱型电动螺旋压力机的综合刚度分析[J]. 现代制造工程,2017,(2):142-148.

 

Zhang R, Zhao T T, Luo G B. The analysis of the synthetical stiffness on the servo direct drive electric screw press [J]. Modern Manufacturing Engineering, 2017,(2):142-148.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com