Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Molecular dynamics simulation on tensile behavior of single-crystal nickel
Authors: Geng Yongxiang1 2  Wu Rongda1 2  Wu Weili1 2  Zheng Haizhong1 2  Li Guifa1 2 Xiao Yixin1 2 Cao Xinpeng1 2 Yi Jiahao1 2 
Unit: State Power Investment Corporation Research Institute of Science and Technology Co. Ltd. 
KeyWords: single-crystal nickel  molecular dynamics  tensile behavior  crystal orientation  hole defect 
ClassificationCode:TG132.3
year,vol(issue):pagenumber:2024,49(4):202-213
Abstract:

 In order to investigate the tensile behavior of single-crystal nickel, the influence laws of tensile temperature (300, 600 and 900 K), crystal orientation ([100], [110] and [111]), number (0, 1 and 3) and diameter (0.2a, 0.4a and 0.6a) of hole defects on its tensile behavior was simulated and analyzed by LAMMPS molecular dynamics software. The results show that the tensile temperature and crystal orientation affect the plastic deformation mode of single-crystal nickel, while the number and diameter of hole defects affect the mechanical properties of single-crystal nickel. As the tensile temperature increases, the plastic deformation mode of single-crystal nickel changes from phase transformation and layer fault to a single layer fault deformation mode. The plastic deformation mode of single-crystal nickel in [100] crystal orientation is dominated by phase transformation and layer fault, while it is dominated by layer fault both in [110] and [111] crystal orientations. Compared with the number of hole defect, the diameter of hole defect has a greater influence on the mechanical properties of single-crystal nickel. The existence of hole defects causes the plastic deformation of single-crystal nickel mainly in the form of layer fault, which extend along the direction of 45° or 135° with the tensile direction.

Funds:
江西省重点研发计划(20223BBE51005);江西省自然(青年)科学基金资助项目(20212BAB214037);国家自然科学基金资助项目(52271076,52271057,52071172,51361026)
AuthorIntro:
作者简介:耿永祥(1987-),男,博士,讲师 E-mail:geng2011@yeah.net 通信作者:郑海忠(1976-),男,博士,教授 E-mail:zhznchu@126.com
Reference:

 [1]陈晶晶,邱小林,李柯,等. 磨粒刮擦诱导单晶镍微结构演化与塑性去除行为的纳观分析[J]. 材料研究学报,2022,36(7):511-518.


 

Chen J J, Qiu X L, Li K, et al. Microstructure evolution and plastic removal for single crystal nickel induced by particle scratching: Atomic simulation method[J]. Chinese Journal of Materials Research, 2022, 36(7):511-518.

 

[2]陈忠,田庚方,李天富,等. 镍基单晶高温合金γ基体相通道研究[J/OL]. 热加工工艺,2024,(6):88-92[2024-03-26].https://doi.org/10.14158/j.cnki.1001-3814.20230440.

 

Chen Z, Tian G F, Li T F, et al. Syudy on γ matrix phase channels in nickel-based single crystal superalloy[J/OL]. Hot Working Technology,2024, (6): 88-92[2024-03-26]. https://doi.org/10.14158/j.cnki.1001-3814.20230440.

[3]任潇一,吕俊霞,周建力,等. 两种取向镍基单晶高温合金拉伸变形行为原位研究[J]. 电子显微学报,2023,42(2): 129-136.

 

Ren X Y, Lyu J X, Zhou J L, et al. In-situ study of tensile deformation behavior of nickel-based single crystal superalloys with two different orientations[J]. Journal of Chinese Electron Microscopy Society, 2023, 42(2):129-136.

 

[4]Li Y Y, Chen H, Chen Y T, et al. Point defect effects on tensile strength of α-zirconium studied by molecular dynamics simulations[J]. Nuclear Materials and Energy, 2019, 20:100683.

 

[5]Chang L, Zhou C Y, Liu H X, et al. Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations[J]. Journal of Materials Science & Technology, 2018, 34(5):864-877.

 

[6]Fazeli S, Vahedpour M, Sadrnezhaad S K, et al. Effect of copper content on tensile mechanical properties of ternary NiTiCu alloy nanowire: Molecular dynamics simulation[J]. Materials Today: Proceedings, 2018, 5(1):1552-1555.

 

[7]薛春,杨千华,楚志兵,等. 温度对单晶镁拉伸性能影响的分子动力学研究[J]. 稀有金属材料与工程,2021,50(5): 1812-1816.

 

Xue C, Yang Q H, Chu Z B, et al. Molecular dynamics study of the influence of temperature on tensile properties of single crystal magnesium[J]. Rare Metal Materials and Engineering, 2021, 50(5):1812-1816.

 

[8]Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloy[J]. Physical Review B, 1986, 33(12):7983-7991.

 

[9]Stukowski A. Structure identification methods for atomistic simulations of crystalline materials[J]. Modelling Simulation in Materials Science Engineering, 2012, 20:045021.

 

[10]Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data[J]. Modeling Simulation in Materials Science Engineering, 2010, 18:085001.

 

[11]Sun Y Z, Zheng H Z, Geng Y X, et al. Molecular dynamics simulations of warm laser shock peening for monocrystalline nickel[J]. Materials Today Communications, 2023, 35:105626.

 

[12]Liu H X, Zhang Y F, Ma Y J, et al. Molecular dynamics simulation of nanostructure formation in copper foil under laser shock forming[J]. Computational Materials Science, 2020, 172: 109352.

 

[13]Yan Z G, Lin Y J. Lomer-Cottrell locks with multiple stair-rod dislocations in a nanostructured Al alloy processed by severe plastic deformation[J]. Materials Science and Engineering: A, 2019, 747:177-184.

 

[14]杜春志,庞帅,吴文平,等. 单晶Ni3Al裂纹扩展行为的分子动力学模拟[J].锻压技术,2023,48(7):255-263.

 

Du C Z, Pang S, Wu W P, et al. Molecular dynamics simulation on crack propagation behavior for single crystal Ni3Al[J]. Forging & Stamping Technology, 2023, 48(7): 255-263.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com