Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of multi-directional compression and annealing treatment on mechanical properties for TA2 industrial pure titanium
Authors: Chen Rongyou1 2  Mo Juncai 1 2  Zhao Xiaolian 1 2 3  Liang Wei 1 2 Huang Yueyu 1 2 Song Yang1 2 Guo Shubo 1 2  Wei Chunhua1 2 3 
Unit: 1. State Key Laboratory of Featured Metal Materials and Lifecycle Safety for Composite Structures  Guangxi University 2. School of Resources  Environment and Materials  Guangxi University 3. Key Laboratory of High Performance Structural Materials and Thermo-surface Processing  Education Department of Guangxi Zhuang Autonomous Region  Guangxi University 
KeyWords: TA2 pure titanium  multi-directional compression  annealing treatment  tensile strength  fracture morphology 
ClassificationCode:TG319;TG166.2
year,vol(issue):pagenumber:2024,49(4):214-218
Abstract:

 In order to improve the mechanical properties of TA2 pure titanium, the multi-directional compression and annealing treatment was carried out on the coarse grain TA2 pure titanium samples, and the microstructures, hardness, tensile properties and tensile fracture morphologies of coarse grain samples, multi-directional compression samples and annealed samples at different temperatures were compared by means of transmission electron fracture morphology observation, micro-nano indentation hardness test, tensile test at room temperature and scanning electron microscope fracture morphology observation. The results show that after multi-directional compression of coarse grain samples, the grain size is refined from 45 μm to 200 nm, the tensile strength is increased by 73.3%, and there are less and shallower dimples obtained in the tensile fracture. When the annealing temperature is below 400 ℃, the grains of multi-directional compression samples do not grow obviously, and the mechanical properties are kept at a high level. With the increasing of annealing temperature, the number of dimples on the tensile fracture is increased and the depth of dimples is deepened. When the annealing temperature is 500 ℃, the grain grows, the tensile strength and hardness are decreased rapidly and the elongation is greatly improved.

Funds:
国家自然科学基金资助项目(51561003);广西高校高性能结构材料及热表加工重点实验室开放基金项目(HPSMT-SP202303)
AuthorIntro:
作者简介:陈荣友(1999-),男,硕士研究生 E-mail:709028670@qq.com 通信作者:韦春华(1984-),男,博士,讲师 E-mail:weichunhua@gxu.edu.cn
Reference:

 [1]杨锐,马英杰,雷家峰,等. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.


 


Yang R, Ma Y J, Lei J F, et al. Fine tuning of composition and morphology of constituent phases of high strength titanium alloys[J]. Acta Metallurgica Sinica, 2021, 57(11): 1455-1470.


 


[2]柴希阳,高志玉,潘涛,等. 工业纯钛TA2热变形过程的流变行为本构方程[J]. 工程科学学报, 2018, 40(2): 226-232.


 


Chai X Y, Gao Z Y, Pan T, et al. Intrinsic equations of rheological behavior of industrial pure titanium TA2 during thermal deformation[J]. Chinese Journal of Engineering, 2018, 40(2): 226-232.


 


[3]杨羽. TA2工业纯钛超细晶化的组织演化规律研究[J]. 轻工科技, 2020, 36(2): 45-46.


 


Yang Y. Study on the organization evolution law of ultrafine crystallization of TA2 industrial pure titanium[J]. Light Industry Science and Technology, 2020, 36(2): 45-46.


 


[4]海敏娜,王永梅,贾栓孝,等.热处理对深海耐压壳用Ti542222钛合金厚板组织性能影响研究[J].稀有金属,2023,47(3):365-372.


 


Hai M N, Wang Y M, Jia S X, et al. Microstructure and properties of high strength and high toughness titanium alloy plate for deepsea pressure hull with solution aging[J]. Chinese Journal of Rare Metals,2023,47(3):365-372.


 


[5]唐伟,余传魁,汪昌顺,等.Ti-6Al-4V合金螺栓滚压过程中的组织演变规律研究[J].稀有金属,2023,47(11):1486-1494.


 


Tang W, Yu C K, Wang C S, et al. Microstructure evolution of Ti-6Al-4V alloy bolt during thread rolling process[J]. Chinese Journal of Rare Metals2023,47(11):1486-1494.


 


[6]Zhao P C, Yuan G J, Wang R Z, et al. Grainrefining and strengthening mechanisms of bulk ultrafine grained CPTi processed by LECAP and MDF[J]. Journal of Materials Science & Technology, 2021, 83: 196-207.


 


[7]Dyakonov G S, Mironov S, Semenova I P, et al. EBSD analysis of grainrefinement mechanisms operating during equalchannel angular pressing of commercialpurity titanium[J]. Acta Materialia, 2019, 173: 174-183.


 


[8]Wang C T, Gao N, Gee M G, et al. Processing of an ultrafinegrained titanium by highpressure torsion: An evaluation of the wear properties with and without a TiN coating[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17: 166-175.


 


[9]Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of alphatitanium using SMAT[J]. Acta Materialia, 2004, 52(14): 4101-4110.


 


[10]Karimi M, Bozorg M. Wear behavior of laminated nanostructured CPTi sheets fabricated by severe plastic deformation[J]. Materials Chemistry and Physics, 2022, 290:126634.


 


[11]Garbacz H, GradzkaDahlke M, Kurzydlowski K J. The tribological properties of nanotitanium obtained by hydrostatic extrusion[J]. Wear, 2007, 263: 572-578.


 


[12]Zherebtsov S, Kudryavtsev E,Kostjuchenko S,et al. Strength and ductilityrelated properties of ultrafine grained twophase titanium alloy produced by warm multiaxial forging [J]. Materials Science & Engineering A, 2012,536: 190-196.


 


[13]Zhao X C, Yang X, Liu X Y, et al. The processing of pure titanium through multiple passes of ECAP at room temperature[J]. Materials Science & Engineering A, 2010, 527(23): 6335-6339.


 


[14]Mironov S, Zherebtsov S, Semiatin S L. The unusual character of microstructure evolution during "abc" deformation of commercialpurity titanium[J]. Journal of Alloys and Compounds, 2022, 913: 165281.


 


[15]Miura H, Kobayashi M, Aoba T, et al. An approach for roomtemperature multidirectional forging of pure titanium for strengthening[J]. Materials Science & Engineering A, 2018, 731: 603-608.


 


[16]Zhao P, Chen B, Kelleher J, et al. Highcyclefatigue induced continuous grain growth in ultrafinegrained titanium[J]. Acta Materialia, 2019, 174: 29-42.


 


[17]Hoseini M, Pourian M H, Bridier F, et al. Thermal stability and annealing behaviour of ultrafine grained commercially pure titanium[J]. Materials Science & Engineering A, 2012, 532: 58-63.


 


[18]赵鹏程. 温度及应力诱发超细晶工业纯钛再结晶与晶粒长大的机理研究[D].上海:华东理工大学,2020.


 


Zhao P C. A Study on the Mechanisms of Temperature and Stress Induced Recrystallization and Grain Growth of Ultrafine Grained CPTi [D]. Shanghai: East China University of Science and Technology, 2020.


 


[19]Hansen N. HallPetch relation and boundary strengthening [J]. Scripta Materialia, 2004, 51(8): 801-806.


 


[20]贺峰,杨双平,曹继敏,等. 冷变形和固溶时效对Ti-25Nb-25Zr合金性能的研究[J].稀有金属,2023,47(7):950-958.


 


He F, Yang S P, Cao J M, et al. Mechanical properties of Ti-25Nb-25Zr alloy in cold deformation and solution and aging[J]. Chinese Journal of Rare Metals2023,47(7):950-958.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com