Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Study on forming and mechanical properties of TA32 titanium alloy lattice structure
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG302
year,vol(issue):pagenumber:2024,49(7):168-178
Abstract:

 The superplastic forming process of TA32 titanium alloy lattice structure, as well as the compression/bending mechanical properties and deformation characteristics in different parts of lattice structure were investigated by experiments and simulations. The results indicate that the optimized loading curve of gas pressure for superplastic forming meets the constraint of strain rate lattice structure deformation and the requirement of precision forming. Based on the finite element mesh after superplastic deformation, the simulation model of lattice structure mechanical properties was effectively constructed, and the preserving and transferring of superplastic deformation defects were achieved. Incomplete forming and rib distortion defects are observed at the edge skin part of lattice structure during the superplastic forming process. The deformation characteristics at the edge skin part of lattice structure during the compression process are mainly the interaction between the plastic buckling of ribs and the shear deformation of structure. The deformation characteristics during the bending process are mainly the plastic buckling of ribs and the wrinkling of upper panel. The compression and bending deformation characteristics of the central lattice structure are the plastic buckling of ribs and the formation of supporting structures between ribs and panel.

Funds:
国家自然科学基金资助项目(U22A20186);航空科学基金(2022Z047025001)
AuthorIntro:
作者简介:刘杨(1997-),男,博士研究生 E-mail:yliu_ustb@126.com 通信作者:孙朝阳(1976-),男,博士,教授 E-mail:suncy@ustb.edu.cn
Reference:

 
[1]Queheillalt D T, Wadley H N G. Titanium alloy lattice truss structures
[J]. Materials & Design, 2009, 30(6): 1966-1975.



[2]Queheillalt D T, Wadley H N G. Cellular metal lattices with hollow trusses
[J]. Acta Materialia, 2005, 53(2): 303-313.


[3]郭锐, 南博华, 周昊, 等. 点阵金属夹层结构抗侵彻实验研究
[J]. 振动与冲击, 2016, 35(24): 45-50.

Guo R, Nan B H, Zhou H, et al. Experiment assessment of the ballistic response of a hybrid-cored sandwich structure
[J]. Journal of Vibration and Shock, 2016, 35(24): 45-50.


[4]武永, 吴迪鹏, 陈明和. 钛合金Kagome点阵SPF/DB成形工艺及结构优化
[J]. 锻压技术, 2023, 48(5): 162-167.

Wu Y, Wu D P, Chen M H. SPF/DB forming process and structural optimization on titanium alloy Kagome lattice
[J]. Forging & Stamping Technology, 2023, 48(5): 162-167.


[5]韩数. TA15金字塔点阵超塑成形/扩散连接制备工艺及力学性能研究
[D]. 济南: 山东大学, 2019.

Han S. Study on Mechanical Properties and Manufacturing Process of SPF/DB for Pyramid Lattice Structure of TA15
[D]. Jinan: Shandong University, 2019.


[6]Wu D P, Wu Y, Fan R L, et al. A constitutive model based on internal variable method and its application to the superplastic forming of four-layer structure
[J]. The International Journal of Advanced Manufacturing Technology, 2023, 130(1-2): 915-931.


[7]赵冰, 李志强, 侯红亮, 等. 钛合金三维点阵结构制备工艺与压缩性能研究
[J]. 稀有金属, 2017, 41(3): 258-266.

Zhao B, Li Z Q, Hou H L, et al. Fabrication and compression test of titanium alloy with three dimensional lattice structure
[J]. Chinese Journal of Rare Metals, 2017, 41(3): 258-266.


[8]Du Z H, Ma S B, Han G Q, et al. The parameter optimization and mechanical property of the honeycomb structure for Ti2AlNb based alloy
[J]. Journal of Manufacturing Processes, 2021, 65: 206-213.


[9]王志录, 施文鹏, 车安达. TA33钛合金舵机支架锻造成形工艺
[J]. 锻压技术, 2023, 48(7): 57-63.

Wang Z L, Shi W P, Che A D. Forging technology of steering engine bracket for TA33 titanium alloy
[J]. Forging & Stamping Technology, 2023, 48(7): 57-63.


[10]Fan R L, Wu Y, Chen M H, et al. Prediction of anisotropic deformation behavior of TA32 titanium alloy sheet during hot tension by crystal plasticity finite element model
[J]. Materials Science and Engineering: A, 2022, 843: 143137.


[11]赵冰, 杨毅, 李志强, 等. 钛合金空心点阵超塑成形/扩散连接成形工艺和性能研究
[J]. 航空制造技术, 2023, 66(9): 24-35.

Zhao B, Yang Y, Li Z Q, et al. Research on SPF/DB process and properties of titanium alloy hollow lattice
[J]. Aeronautical Manufacturing Technology, 2023, 66(9): 24-35.


[12]GB/T 1453—2005, 夹层结构或芯子平压性能试验方法
[S].

GB/T 1453—2005, Test method for flatwise compression properties of sandwich constructions or cores
[S].


[13]GB/T 1456—2005, 夹层结构弯曲性能试验方法
[S].

GB/T 1456—2005, Test method for flexural properties of sandwich constructions
[S].


[14]Liu Y, Li Z Q, Zhao B, et al. Microstructure evolution characteristics of near-α TA32 titanium alloy during superplastic tensile deformation
[J]. Materials Science and Engineering: A, 2023, 879: 145264.


[15]Wu Y, Wu D P, Ma J, et al. A physically based constitutive model of Ti-6Al-4V and application in the SPF/DB process for a pyramid lattice sandwich panel
[J]. Archives of Civil and Mechanical Engineering, 2021, 21: 161.


[16]刘杨, 李志强, 赵冰, 等. TA32钛合金超塑性变形行为及本构模型
[J]. 稀有金属材料与工程, 2022, 51(10): 3752-3761.

Liu Y, Li Z Q, Zhao B, et al. Superplastic deformation behavior and constitutive model of TA32 titanium alloy
[J]. Rare Metal Materials and Engineering, 2022, 51(10): 3752-3761.


[17]ISO 6892-1:2009, Metallic materials-Tensile testing-Part 1: Method of test at room temperature
[S].


[18]唐玉玲, 韩露, 张峻霞, 等. 曲面碳纤维增强树脂复合材料点阵夹芯结构的弯曲和振动特性
[J]. 复合材料学报, 2023, 40(6): 3651-3661.

Tang Y L, Han L, Zhang J X, et al. Bending and vibration performance of curved carbon fiber reinforced polymer pyramidal sandwich structure
[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3651-3661.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com