Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Effect of grain elongation morphology on microstructure and properties of S30432 stainless steel tube
Authors: Si Guangquan1  Li Fangcao2 3  Tian Xiao2  Li Taijiang2  Xu Hui2 3 
Unit: 1. China Huaneng Group Co.  Ltd.  2. Xi′an Thermal Power Research Institute Co.  Ltd.   3.Xi′an Yitong Thermal Technical Service Co.  Ltd. 
KeyWords: S30432 stainless steel tube  grain morphology  stress-rupture performance  microstructure evolution  precipitated phase  grain elongation degree 
ClassificationCode:TG335.71;TG142.7
year,vol(issue):pagenumber:2024,49(8):214-223
Abstract:

  In order to study the influence of grain elongation morphology on the high-temperature service performance of S30432 stainless steel tube for boiler, the microstructure and properties of two types of S30432 stainless steel tube, namely grain elongation morphology and equiaxed crystal morphology, were studied and analyzed by optical microscopy, scanning electron microscopy, hardness testing, tensile testing and stress-rupture testing, and the performance differences of steel tubes with different grain morphologies were also analyzed. The results show that the elongated grain morphology (Grain elongation degree3) can cause an increase in room temperature tensile strength and hardness of S30432 stainless steel. At the same time, during the stress-rupture process, the microstructure of S30432 stainless steel in grain elongation morphology (Grain elongation degree3) shows that carbides M23C6 rapidly precipitate in a chain like manner at grain boundaries and coarsen rapidly, exhibiting a faster microstructural aging rate, thereby reducing its high-temperature stress-rupture performance. It is recommended to strictly control the grain morphology of S30432 stainless steel and limit the grain elongation degree within 1.0-2.0, which can achieve the ideal grain morphology and good stress-rupture performance to ensure the service safety of high-temperature components in power plant boilers.

Funds:
AuthorIntro:
作者简介:司广全(1969-),男,学士,正高级经济师 E-mail:13691236622@139.com 通信作者:李太江(1973-),男,硕士,正高级工程师 E-mail:litaijiang@tpri.com.cn
Reference:

 [1]刘正东,程世长,杨钢,. 中国超超临界火电机组用S30432钢管研制[J]. 钢铁,2010,45(6):1-6.


Liu Z DCheng S CYang Get al. Research and development of S30432 steel tubes in China used for ultra supercriticalUSCpower plants [J]. Iron & Steel,2010,45(6):1-6.


[2]刘正东,程世长,包汉生,. 超超临界火电机组用锅炉钢技术国产化问题[J]. 钢铁,2009,44(6):1-7.


Liu Z DCheng S CBao H Set al. Localization of boiler steel technolgy in China used for ultra super critical power plants[J]. Iron & Steel, 2009,44(6):1-7.


[3]李益民,范长信,杨百勋,. 大型火电机组用新型耐热钢[M]. 北京:中国电力出版社, 2013.


Li Y M, Fan C X,Yang B X, et al. New Heat-resistant Steel for Large Thermal Power Units[M]. Beijing: China Electric Power Press,2013.


[4]邢娜,黄宝,何立波. 超临界超超临界锅炉管品种的开发现状[J]. 特殊钢,2016,37(1):17-21.


Xing N, Huang B,He L B. Present Status of development of supercritical and ultra-supercritical boiler tubes[J]. Special Steel, 2016,37(1):17-21.


[5]杨岩,程世长,杨钢. 铜含量对Super304H钢持久性能的影响[J]. 机械工程材料,2002(10):23-25.


Yang YCheng S CYang G. Effect of Cu addition on the creep rupture properties of Super304H steel[J]. Materials for Mechanical Engineering, 2002(10):23-25.


[6]李鹏,吴桂,康喜唐,. 超超临界S30432无缝厚壁管的带状晶粒组织研究[J]. 铸造设备与工艺,2022(1):17-20,23.


Li P, Wu G, Kang X T, et al. Research on banded grains of ultra-supercritical S30432 seamless thick-walled steel tube[J]. Foundry Equipment & Technology, 2022(1):17-20,23.


[7]张冬宇.轧制过程中钢的奥氏体变形与再结晶[J]. 金属世界,2007(3):39-42.


Zhang D Y. The Deformation and recrystalization of austenite of steel in rolling processing[J]. Metal World, 2007(3):39-42.


[8]方旭东,李阳,夏焱,等. 冷轧工艺对C-HRA-5管材组织及力学性能的影响[J].轧钢,201734(6)38-41


Fang X D, Li Y, Xia Y, et al. Effeet of cold rolling process on mierostrueture and mechanical properties of C-HRA-5 tubes[J]. Steel Rolling, 2017,34(6):38-41.


[9]钟正彬,张杰. 固溶温度对S30432新型奥氏体不锈钢性能的影响[J]. 金属加工(热加工),2021(9):35-37.


Zhong Z B, Zhang J. The effect of solid solution temperature on the properties of S30432 new austenitic stainless steel[J]. MW Metal Forming, 2021(9):35-37.


[10]包汉生,程世长,刘正东,. 热处理对ASME S30432 奥氏体耐热钢性能的影响[J]. 金属热处理,2009,34(8):77-82.


Bao H S, Cheng S CLiu Z D,et al. Effect of heat treatment on properties of ASTM S30432 austenitic heat resistant steel[J]. Heat Treatment of Metals, 2009,34(8):77-82.


[11]GB/T 53102023,高压锅炉用无缝钢管[S].


GB/T 53102023Seamless steel tubes and pipes for high pressure boiler[S].


[12]ASME SA-213-2021Specification for seamless ferritic and austenitic alloy-steel boiler, super-heater, and heat-exchanger tubes[S].


[13]GB/T 63942017,金属平均晶粒度测定方法[S].


 GB/T 63942017 Determination of estimating the average grain size of metal[S].


[14]GB/T 231.12018,金属材料布氏硬度试验第1部分: 试验方法[S].


GB/T 231.12018Metallic materialsBrinell hardness testPart 1: Test method [S].


[15]GB/T 228.12021,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.12021Metallic materialsTensile testingPart 1: Method of test at room temperature[S].


[16]GB/T 20392012,金属材料单轴拉伸蠕变试验方法[S].


GB/T 20392012Metallic materialsUniaxial creep testing method in tension[S].


[17]田晓,李芳草,徐慧,. 一种用于奥氏体不锈钢管非等轴晶组织晶粒度的测量与表征方法[P].中国:CN113125319A,2021-07-16.


Tian X, Li F C, Xu H, et al. A measurement and characterization method for grain size of non equiaxed crystal structure inaustenitic stainless steel tubes[P]. China: CN113125319A,2021-07-16.


[18]宋爱玲,曹铁山,程从前,. 晶粒形态对HR3C耐热不锈钢时效脆性的影响[J]. 机械工程材料,2022,46(3):53-54.


Song A L, Cao T S,Cheng C Q, et al. Effect of grain morphology on aging brittleness of HR3C heat-resistantstainless steel[J]. Materials for Mechanical Engineering, 2022,46(3):53-54.


[19]李昌义,王行,王爱琴,. 大型奥氏体不锈钢锻件的晶粒尺寸控制[J]. 锻压技术,2022,47(8):22-28.


Li C YWang HWang A Qet al. Grain size control for large austenitic stainless steel forgings[J]. Forging & Stamping Technology,2022,47(8):22-28.


[20]李超群,张立文,李飞,. 10钢热变形过程动态再结晶行为[J]. 锻压技术,2022,47(2):207-212.


Li C QZhang L WLi Fet al. Dynamic recrystallization behavior for 10 steel during thermal deformation process[J]. Forging & Stamping Technology,2022,47(2):207-212.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com