Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Numerical simulation study on dynamic recrystallization during hot extrusion of 304 stainless steel
Authors: Li Chunyu  Qiu Chunlin 
Unit: State Key Laboratory of Rolling Technology and Continuous Rolling Automation  Northeastern University 
KeyWords: 304 stainless steel  dynamic recrystallization  hot extrusion  microstructure evolution  grain size 
ClassificationCode:TG376.9
year,vol(issue):pagenumber:2024,49(10):56-64
Abstract:

 For 304 stainless steel, the microstructural evolution of experimental steel tube during the hot extrusion process was studied by using the finite element method. Firstly, a single-pass hot compression experiment was performed by using a thermal simulator, and the constitutive equation and dynamic recrystallization model of the experimental steel were determined. Then, after establishing a thermo-mechanical coupling model for the hot compression and hot extrusion processes in software ABAQUS, the accuracy of the numerical model was verified by comparison between the simulation and experiment of hot compression. Finally, the change laws of the temperature and stress-strain fields during the hot extrusion simulation of the experimental steel were further analyzed, and the microstructural evolution were numerically simulated with the help of the secondary development function of ABAQUS to reveal the change laws in dynamic recrystallization volume fraction, grain size, average grain size and grain distribution uniformity. The results show that in the early stage of extrusion, the grain size at the front end of steel tube is coarse, while in the steady-state and later stages of extrusion, the grain size of steel tube is smaller and evenly distributed. With the increasing of initial billet temperature and extrusion speed, the uniformity of grain size distribution both show a trend of first increase and then decrease.

Funds:
国家重点研发计划(2021YFB3702001)
AuthorIntro:
作者简介:李春雨(1998-),男,硕士,E-mail:li15566271250@163.com;通信作者:邱春林(1964-),男,硕士,副教授,E-mail:qiucl@ral.neu.edu.cn
Reference:

[1]Kamaya M. Failure assessment curve for austenitic stainless steel pipes of nuclear power plants[J].Engineering Fracture Mechanics, 2020, 238: 107283.


[2]党利.Inconel 625合金大型厚壁管挤压变形宏微观规律研究[D]. 西安: 西北工业大学,2016.

Dang L. Inconel 625 Alloy Large Thick-walled Tube Extrusion Deformation Macro-micro Law Research[D]. Xi′an: Northwestern Polytechnical University, 2016.

[3]史勤益, 颜余仁, 赵先锐, 等. 304奥氏体不锈钢的热处理工艺研究[J]. 科学技术与工程,2011, 11(24): 5910-5913.

Shi Q Y, Yan Y R, Zhao X R, et al. Heat treatment process of 304 austenitic stainless steel[J]. Science Technology and Engineering, 2011, 11(24): 5910-5913.

[4]Bansod A V, Patil A P, Moom A P, et al. Intergranular corrosion behavior of low-nickel and 304 austenitic stainless steels[J]. Journal of Materials Engineering and Performance, 2016, 25(9): 3615-3626.

[5]李春雨. 铜及其合金挤压材微观组织演变数值模拟研究[D]. 沈阳: 东北大学,2020.

Li C Y. Numerical Simulation Study on Microstructure Evolution of Copper and Its Alloy Extruded Material[D]. Shenyang: Northeastern University, 2020.

[6]赵昊, 丁淑兰. ABAQUS二次开发在金属微观组织模拟中的应用[J]. 热加工工艺, 2014, 43(24): 87-90,97.

Zhao H, Ding S L. Application of second-developed ABAQUS post-process in numerical simulation of microstructure evolution[J]. Hot Working Technology, 2014, 43(24): 87-90, 97.

[7]陈炜, 薛雷, 陈康敏, 等. 双相钢激光拼焊板温拉伸性能及微观组织[J]. 材料工程, 2010(7): 54-58.

Chen W, Xue L, Chen K M, et al. Warm tensile properties and microstructures of dual phase steel laser tailor welded blanks[J]. Journal of Materials Engineering, 2010(7): 54-58.

[8]孙文伟, 张楚函, 赵亚军, 等. 奥氏体不锈钢的热压缩本构方程及动态再结晶行为[J]. 机械工程材料, 2022, 46(6): 49-56, 63.

Sun W W, Zhang C H, Zhao Y J, et al. Thermal compression constitutive equation and dynamic recrystallization behavior of austenitic stainless steel[J]. Materials for Mechanical Engineering, 2022, 46(6): 49-56, 63.

[9]张传滨, 刘洁, 张进学, 等. 核电用304不锈钢动态再结晶数学模型的建立[J]. 铸造设备与工艺, 2011(1): 16-19.

Zhang C B, Liu J, Zhang J X, et al. Mathematical model of dynamic recrystallization for nuclear power 304 austenitic stainless steel[J]. Foundry Equipment & Technology, 2011(1): 16-19.

[10]王忠堂, 梁海成, 李艳娟, 等. AZ31镁合金热变形动态再结晶晶粒尺寸预测模型[J]. 塑性工程学报, 2023, 30(7): 85-91.

Wang Z T, Liang H C, Li Y J, et al. Prediction model of dynamic recrystallization grain size of AZ31 magnesium alloy during hot deformation[J]. Journal of Plasticity Engineering, 2023, 30(7): 85-91.

[11]刘强. 基于空心铸坯P91钢热挤压理论分析与数值模拟[D]. 太原:太原科技大学, 2015.

Liu Q. Theoretical Analysis and Numerical Simulation of Hot Extrusion of P91 Steel Based on Hollow Billet Casting[D]. Taiyuan: Taiyuan University of Science and Technology, 2015.

[12]邹菲菲, 关小军, 韩振强, 等. 09CuPTiRE钢动态再结晶的热模拟实验与有限元模拟[J].山东大学学报(工学版), 2006(5): 17-20, 24.

Zou F F, Guan X J, Han Z Q, et al. Thermal simulating experiment and FEM simulation of dynamic recrystallization of 09CuPTiRE steel[J]. Journal of Shandong University(Engineering Science), 2006(5): 17-20, 24.

[13]贾璐, 李永堂, 李振晓. 基于ABAQUS的铸态耐热合金钢热挤压成形数值模拟研究[J]. 精密成形工程, 2016,8(5): 108-115.

Jia L, Li Y T, Li Z X. The numerical simulation based on ABAQUS for hot extrusion forming of cast heat-resisting alloy steel[J]. Journal of Netshape Forming Engineering, 2016,8(5): 108-115.

[14]丁雨田, 高鑫, 豆正义, 等. GH3625合金管材热挤压过程的数值模拟[J]. 特种铸造及有色合金, 2016, 36(11): 1121-1125.

Ding Y T, Gao X, Dou Z Y, et al. Numerical simulation of hot extrusion process of GH3625 alloy tubes[J]. Special Casting & Nonferrous Alloys, 2016, 36(11): 1121-1125.

[15]Park N, Song Y, Bae G, et al. Evaluation of the effect of ram speed for extrusion of Al6063 based on ALE-based finite element analysis of L-shaped sample-ScienceDirect[J]. Procedia Manufacturing, 2020, 50: 673-676.

[16]高杰, 王锦永, 刘富强, 等. 00Cr13Ni5Mo马氏体不锈钢管挤压成形质量检测与分析[J]. 金属加工(热加工), 2023(7): 111-115.

Gao J, Wang J Y, Liu F Q, et al. Quality inspection and analysis of forming process test of 00Cr13Ni5Mo martensitic stainless steel tube[J]. MW Metal Forming, 2023(7): 111-115.

[17]谢建新, 刘静安. 金属挤压理论与技术[M]. 北京: 冶金工业出版社, 2001.

Xie J X, Liu J A. Theory and Technology of Metals Extrusion[M]. Beijing: Metallurgical Industry Press, 2001.

[18]张云峦, 吴天华, 张羽, 等. 聚氨酯橡胶硬度对薄壁三通管内高压成形的影响[J]. 锻压技术,2022,47(1):91-97.

Zhang Y L, Wu T H, Zhang Y, et al. Influence of polyurethane rubber hardness on internal high pressure forming for thin-walled T-tube[J]. Forging & Stamping Technology, 2022,47(1):91-97.

[19]王宝顺, 林奔, 罗坤杰, 等. 玻璃润滑剂在钢热挤压工艺中的应用[J]. 世界钢铁. 2010, 10(3): 44-50.

Wang B S, Lin B, Luo K J. Application of glass lubricants in the steel hot extrusion process[J]. World Iron & Steel,2010, 10(3): 44-50.


[20]Jia L, Li Y T, Zhang Y. A characterization for the deformation behavior of as-cast P91 alloy steel and utilization in hot extrusion process[J]. Advances in Materials Science and Engineering,2017,2017(1): 6582739.

[21]Hansson S, Jansson T. Sensitivity analysis of a finite element model for the simulation of stainless steel tube extrusion[J]. Journal of Materials Processing Technology, 2010, 210(10):1386-1396.

[22]吴建成, 朱以恒, 张春阳. 基于ABAQUS-Python二次开发的特定过盈配合结构参数化分析[J]. 中国机械, 2023(23): 50-55.

Wu J C, Zhu Y H, Zhang C Y. Parametric analysis of specific interference fit structures based on ABAQUS-Python secondary development[J]. Machine China, 2023(23): 50-55.

[23]李凡, 王安恒, 王雷, 等. 基于ABAQUS二次开发的非对称Z截面型材多道次滚弯成形工艺[J]. 锻压技术, 2023, 48(4): 152-161.

Li F, Wang A H, Wang L, et al. Multi-pass roll bending process of asymmetric Z-section profiles based on ABAQUS secondary development[J]. Forging & Stamping Technology, 2023, 48(4): 152-161.

[24]钟同圣, 卫丰, 王鸷, 等. Python语言和ABAQUS前处理二次开发[J]. 郑州大学学报(理学版), 2006(1): 60-64.

Zhong T S, Wei F, Wang Z, et al. Second development for fore treatment of ABAQUS using python language[J]. Journal of Zhengzhou University(Natural Science Edition), 2006(1): 60-64.

[25]嵇立志. 基于Python的MM轧制过程ABAQUS自动建模及仿真分析[D]. 沈阳: 东北大学, 2019.

Ji L Z. Python Based ABAQUS Automatic Modeling and Simulation Analysis of MM Rolling Process[D]. Shenyang: Northeastern University, 2019.

[26]田玉泰. 基于Python的Abaqus前、后处理GUI插件二次开发与应用[J]. 计算机辅助工程, 2022, 31(2): 63-68.

Tian Y T. GUI plugin redevelopment and application of Abaqus pre-and post-processing based on Python[J]. Computer Aided Engineering, 2022, 31(2): 63-68.

[27]王引卫. 304不锈钢大型管材挤压工艺虚拟正交优化[J]. 热加工工艺, 2013, 42(13): 87-88, 91.

Wang Y W. Virtual orthogonal optimization on extrusion process of large 304 stainless steel tube[J]. Hot Working Technology, 2013, 42(13): 87-88, 91.

[28]郑跃武, 李玉贵, 武佳奇, 等. Incoloy825高温合金热变形行为及动态再结晶模型[J]. 塑性工程学报, 2023, 30(1): 168-175.

Zheng Y W, Li Y G, Wu J Q, et al. Hot deformation behavior and dynamic recrystallization model of Incoloy825 superalloy[J]. Journal of Plasticity Engineering, 2023, 30(1): 168-175.

[29]吴志强, 邓偲瀛, 刘欢, 等. Zr-1.0Sn-1.0Nb-0.1Fe合金热变形行为及动态再结晶模型建立[J]. 稀有金属材料与工程, 2022, 51(7): 2599-2607.

Wu Z Q, Deng S Y, Liu H, et al.Hot deformation behavior and dynamic recrystallization modeling of Zr-1.0Sn-1.0Nb-0.1Fe alloy[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2599-2607.

[30]Mapelli C, Tagliabue C. Flow and thermal analysis during hot extrusion of two kinds of stainless steel: AISI 316Ti and AISI 329A[J]. Steel Research International, 2005, 76(5): 377-386.

[31]Guo L G, Dong K K, Zhang B J,et al. Dynamic recrystallization rules in needle piercing extrusion for AISI304 stainless steel pipe [J].Transactions of Nonferrous Metals Society of China,2012, 22(S2):519-527.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com