Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Heat treatment process of residual heat after forging of complex precision forgings for difficult-to-deform metal gear blank
Authors: Xiao Gangfeng1  Liang Jingfeng1  Liu Meihua2  Xu Erling2  Xia Qinxiang1  Li Yixu2 
Unit: 1.School of Mechanical and Automotive Engineering  South China University of Technology 2.Guangdong Shao Casting Precision Forging Co.  Ltd. 
KeyWords: precision forgings of gear blank  heat treatment of residual heat  isothermal normalizing  microstructure  hardness 
ClassificationCode:TG156
year,vol(issue):pagenumber:2024,49(10):203-208
Abstract:

For the problems of high energy consumption and low efficiency in heat treatment after forging of precision forgings for gear blank, an isothermal normalizing heat treatment process of residual heat by using forging residual heat was proposed, which reduced the heat treatment time and saved the energy consumption on the basis of ensuring the performance of forgings. Then, according to the dimension and material characteristics of gear blank, the heat treatment process of residual heat after forging was developed, and the finite element simulation model for the heat treatment process of residual heat after forging was established by software Deform. Furthermore, the distribution laws of temperature, equivalent stress and microstructure of forgings during heat treatment were studied. The results show that during the heat treatment process, the cooling speed for the upper end face of inner hole of gear blank is the fastest, and the pearlite content is the highest, while the cooling speed for the outer ring center of gear blank is the slowest, and the pearlite content is the lowest. The maximum equivalent stress generated at the inner wall is about 60 MPa. Thus, the developed heat treatment process of residual heat after forging can obtain qualified microstructure and hardness, and greatly reduces the energy and time of heating and holding in the isothermal normalizing heat treatment process.

Funds:
广东省科技专项资金项目(210907154533470)
AuthorIntro:
作者简介:肖刚锋(1987-),男,博士,副教授,E-mail:xiaogf@scut.edu.cn;通信作者:夏琴香(1964-),女,博士,教授,E-mail:meqxxia@scut.edu.cn
Reference:

[1]陈晖,周细应.汽车齿轮钢的研究进展[J].材料科学与工程学报,2011,29(3):478-482.


Chen H, Zhou X Y. Research progress of gear steel for automobiles[J].Journal of Materials Science and Engineering,2011,29(3):478-482.

[2]刘玉冰,管延锦,李玉琦,等. 激光热处理对7CrSiMnMoV模具钢组织与性能的影响[J]. 锻压技术,2023,48(11):185-195.

Liu Y B,Guan Y J,Li Y Q,et al. Influence of laser heat treatment on microstructure and properties for 7CrSiMnMoV die steel [J]. Forging & Stamping Technology,2023,48(11):185-195.

[3]黄正. 船用大型锻件余热热处理工艺方法研究及参数优化[D]. 广州:华南理工大学,2011.

Huang Z. Research on Waste Heat Heat Treatment Process Method and Parameter Optimization of Marine Large Forgings[D]. Guangzhou: South China University of Technology, 2011.

[4]陈希原. 42CrMo钢锻件的锻造余热淬火热处理[J]. 锻造与冲压,2008(10):28,30,32,34.

Chen X Y. Forging residual heat quenching heat treatment of 42CrMo steel forgings[J]. Forging & Metalforming, 2008(10): 28,30,32,34.

[5]童洲.5CrNiMo热作模具钢锻后余热热处理工艺研究[D].广州:华南理工大学, 2014.

Tong Z. 5CrNiMo Hot Work Mold Steel After Forging Residual Heat Treatment Process Research[D]. Guangzhou: South China University Of Technology, 2014.

[6]李一振,黄正,夏琴香. 轴类大锻件锻后余热热处理工艺研究[J]. 广东造船,2012,31(3):43-46, 51.

Li Y Z, Huang Z, Xia Q X. Research on heat treatment process for afterheat utilization of long-shaft heavy forgings[J]. Guangdong Shipbuilding, 2012, 31(3): 43-46, 51.

[7]翟崇琳,苗进,张俊,等. 50CrV钢汽车稳定杆热处理工艺优化[J]. 热加工工艺,2020,49(14):143-145, 148.

Zhai C L, Miao J, Zhang J, et al. Optimization of heat treatment technology of 50CrV steel automobile stabilizer[J]. Hot Working Technology, 2020, 49(14): 143-145, 148.

[8]樊东黎,徐跃明,佟晓辉.热处理技术数据手册[M].2版.北京:机械工业出版社,2006.

Fan D L, Xu Y M, Tong X H. Heat Treatment Data Manual[M]. 2nd Edition. Beijing: China Machine Press, 2006.

[9]刘澄,杨晨,赵振波,等. 多步连续冷却等温正火对20CrMnTiH钢锻后显微组织及性能的影响[J]. 金属热处理,2017,42(8):93-97.

Liu C, Yang C, Zhao Z B, et al. Effect of multiple-step continuous cooling and isothermal normalizing on microstructure and mechanical properties of 20CrMnTiH forged steel[J]. Heat Treatment of Metals, 2017, 42(8):93-97.

[10]崔忠圻,覃耀春.金属学与热处理[M].2版.北京:机械工业出版社,2007.

Cui Z Q, Qin Y C. Metallurgy and Heat Treatment [M]. 2nd Edition. Beijing: China Machine Press, 2007.

[11]耿学明,黎定旺. 大型锻件的调质热处理实践[J]. 金属加工(热加工),2010(5): 40-41,45.

GengX M, Li D W. Practice of tempering heat treatment for large forgings[J]. MW Metal Forming, 2010(5): 40-41, 45.

[12]陈再良,吕东显,曹明宇,等. 金属热处理残余应力与开裂失效关系的探讨[J]. 金属热处理,2007,32(S1):40-44.

Chen Z L, Lyu D X, Cao M Y, et al. Study on residual stress and crack failure in metal heat treatment[J]. Heat Treatment of Metals, 2007,32(S1):40-44.

[13]张建,李长生,李彬周,等. 20CrNi2MoV钢连续冷却过程中的相变行为[J]. 辽宁科技大学学报,2017,40(1):60-66.

Zhang J, Li C S, Li B Z, et al. Continuous cooling transformation behavior of 20CrNi2MoV steel[J]. Journal of University of Science and Technology Liaoning, 2017, 40(1):60-66.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com