Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Deformation behavior and microstructure evolution law of two-phase region for TB6 titanium alloy
Authors: Xu Ping′an1  Hua Kui2  Guo Nan1  Li Zhiyong1  Wang Haipeng2  Liu Baoliang2  Song Amin2 
Unit: 1.Changhe Aircraft Industry (Group) Corporation Limited 2.Xi′an Triangle Defense Incorporated Company 
KeyWords: TB6 titanium alloy thermal deformation deformation temperature strain rate deformation amount microstructure evolution 
ClassificationCode:TG311;TG156
year,vol(issue):pagenumber:2024,49(10):238-247
Abstract:

The true stress-true strain curve of TB6 titanium alloy was obtained by conducting thermal simulation compression experiments with different parameters on TB6 titanium alloy bars, and the microstructure evolution law of the two-phase region for TB6 titanium alloy under different deformation temperatures (700-790 ℃), strain rates (0.001-1 s-1), and the recrystallization behavior under certain deformation conditions (760 ℃, 0.1 s-1) were compared and analyzed when the equivalent stain was 0.9. The results show that excessive deformation temperature leads to an increase in the number of α to β phase transition, and the appropriate deformation temperature is 700-760 ℃. The flow stress is positively correlated with the strain rate, and the increasing of flow stress delays the kinetic process of dynamic recovery and dynamic recrystallization, which is not conducive to the precise plastic forming of forgings. The appropriate strain rate is 0.001-0.1 s-1. The increasing of deformation amount can promote the recrystallization and spheroidization of the elongated α phase into the equiaaxial grain, but it is not conducive to the toughness of alloy, and the appropriate deformation amount is about 40%. Under the conditions of the deformation temperature of 760 ℃ and the strain rate of 0.1 s-1, the proportion of large, medium and small angle grain boundaries is about 8.6%, 31.7% and 59.8%, respectively. The recrystallization fractions of α and β phases are about 14.8% and 4.99%, respectively. In some directions, both grain structures exhibit strong texture. The unstable region of thermal deformation for TB6 titanium alloy two-phase region is mainly concentrated in the region with the deformation temperature of 700-760 ℃ and the strain rate of 0.01832-1 s-1, and the corresponding thermal processing diagrams are drawn further.

Funds:
国家重点研发计划资助项目(2022XX5100)
AuthorIntro:
作者简介:徐平安(1976-),男,学士,高级工程师,E-mail:116049213@qq.com;通信作者:花魁(1990-),男,硕士,工程师,E-mail:602583573@qq.com
Reference:

[1]李妮.TB6钛合金的热变形行为及锻件热成形模拟[D].贵阳:贵州大学,2020.


Li N.Hot Deformation Behaviors and Hot Forming Simulation for Titanium Alloy of Forging TB6[D].Guiyang:Guizhou University,2020.

[2]上官姝哲.基于加工图技术的Ti3Al基合金锻造工艺优化[D].南昌:南昌航空大学,2012.

Shangguan S Z.Optimization of Forging Process of Ti3Al Base Alloy Based on Machining Diagram Technology[D]. Nanchang:Nanchang Aeronautical University,2012.

[3]向彪,张鹏,崔明亮.TB6钛合金的热加工工艺优化与组织预测[J].塑性工程学报,2022,29(7):107-118.

Xiang B,Zhang P,Cui M L.Hot working process optimization and microstructure prediction of TB6 titanium alloy[J].Journal of Plasticity Engineering,2022,29(7):107-118.

[4]欧阳德来.TB6和TA15钛合金β锻组织演变及动态再结晶行为研究[D].南京:南京航空航天大学,2011.

Ouyang D L.Study on Microstructure Evolution and Dynamic Recrystallization Behavior of TB6 and TA15 Titanium Alloys β Forging[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011.

[5]GJB 2218A—2018,航空用钛及钛合金棒材和锻坯规范[S].

GJB 2218A—2018,Specification for titanium and titanium alloy bars and forgings stocks for aircraft[S].

[6]《中国航空材料手册》编辑委员会.中国航空材料手册 [M]. 2版.北京:中国标准出版社,2001.

China Aeronautical Materials Manual Editorial Committee. China Aeronautical Materials Manual [M]. 2nd Edition. Beijing: Standards Press of China,2001.

[7]钟玉,屈金山,陈文静,等.TC4钛合金的电子束焊[J].热加工工艺,2007,36(15):24-26.

Zhong Y,Qu J S,Chen W J,et al.Electron beam welding of TC4 alloy[J].Hot Working Technology,2007,36(15):24-26.

[8]崔均辉,杨合,孙志超.TB6钛合金热变形行为及本构模型研究[J].稀有金属材料与工程,2012,41(7):1166-1170.

Cui J H,Yang H,Sun Z C.Research on hot deformation behavior and constitutive model of titanium alloy TB6[J].Rare Metal Materials and Engineering,2012,41(7):1166-1170.

[9]吴成宝,杨合,孙志超,等.片层组织TA15钛合金的热变形行为及组织球化[J].中国有色金属学报,2010,20(Z1):94-99.

Wu C B,Yang H,Sun Z C,et al.Hot deformation behavior and microstructure globularization of TA15 with lamellar structure[J].The Chinese Journal of Nonferrous Metals,2010,20(Z1):94-99.

[10]鲍如强,黄旭,黄利军.Ti-10V-2Fe-3Al合金热工艺的研究[J].稀有金属,2005,29(2):214-218.

Bao R Q,Huang X,Huang L J.Investigation on hot processes of Ti-10V-2Fe-3Al alloy[J].Chinese Journal of Rare Metals,2005,29(2):214-218.

[11]陈勇.TA15钛合金热强力旋压组织演化规律及强化机理研究[D].哈尔滨:哈尔滨工业大学,2014.

Chen Y.Study on Microstructure Evolution and Strengthening Mechanism of TA15 Titanium Alloy by Hot Strength Spinning[D].Harbin:Harbin Institute of Technology,2014.

[12]郑群辉.TC27钛合金的热变形行为及其组织演变规律[D].南昌:南昌航空大学,2015.

Zheng Q H.Thermal Deformation Behavior and Microstructure Evolution of TC27 Titanium Alloy[D]. Nanchang:Nanchang Aeronautical University,2015.

[13]屈磊. Beta钛合金中{332}<113>孪生行为及孪晶在热处理时的演化[D]. 西安:西安建筑科技大学,2013.

Qu L.Twinning Behavior of {332}<113> in Beta Titanium Alloys and Evolution of Twins During Heat Treatment[D].Xi′an: Xi′an University of Architecture and Technology, 2013.

[14]吴琳.锻态TB6钛合金热变形行为研究及加工工艺参数优化[D].南昌:南昌航空大学,2010.

Wu L.Study on Hot Deformation Behavior of Wrought TB6 Titanium Alloy and Optimization of Processing Parameters[D]. Nanchang:Nanchang Aeronautical University,2010.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com