Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot deformation behavior and hot processing map of ZGMn13Cr2 steel
Authors: Zhang Peiyan 
Unit: (School of Mechanical and Electrical Engineering Zhengzhou Tourism College Zhengzhou 451464 China) 
KeyWords: ZGMn13Cr2 steel  hot deformation behavior  hot processing map  excavator bucket teeth  forging process 
ClassificationCode:TG314.3
year,vol(issue):pagenumber:2024,49(9):27-34
Abstract:

 To study the hot deformation behavior and hot processing map of ZGMn13Cr2 steel, the high-temperature compression experiments were conducted by 

hot simulation testing machine Gleeble-3500, and the true stress-true strain curves of ZGMn13Cr2 steel were obtained under the deformation temperatures of 900, 1000, 1100 and 1200 ℃, and the strain rates of 0.01, 0.1, 1 and 10 s-1. Then, the rheological stress change laws under different deformation conditions were analyzed, and based on the experimental data, the Arrhenius constitutive equation and the hot processing map of ZGMn13Cr2 steel were obtained by linear fitting. Furthermore, for a certain model of excavator bucket teeth, the hot processing properties of the material were studied, and the forging process of excavator bucket teeth was formulated and simulated by numerical simulation software. Finally, the process parameters obtained from the simulation were verified by process experiments. The research results indicate that the optimal hot processing parameters of ZGMn13Cr2 steel is the deformation temperature of 1057-1167 ℃, and the strain rate of 0.2-0.5 s-1. The forgings of bucket teeth obtained from the process test is fully filled, which is basically consistent with the simulation results. The research results provide a certain theoretical basis for the formulation of forging process parameters for ZGMn13Cr2 steel and the actual forging production of excavator bucket teeth.
Funds:
基金项目:河南省高等学校重点科研项目(24B430021);河南省高等教育教学改革研究与实践项目(2024SJGLX0737)
AuthorIntro:
作者简介:张培彦(1979-),男,硕士,副教授 E-mail:zpy20240530@163.com
Reference:

 \[1]  孙朝远, 熊逸博, 刘德建, 等.飞机滑轨工艺凸台增材-锻造复合制造技术\[J]. 锻压技术, 2022,47(2):1-9.


 

Sun C Y, Xiong Y B, Liu D J, et al. Aircraft slide rail process boss additive forging composite manufacturing technology \[J] .Forging & Stamping Technology, 2022,47 (2): 1-9.

 

\[2]  王北平, 韩冬, 王兆楠, 等. 细长薄壁发动机金属壳体精密制造技术\[J]. 锻压技术, 2023, 47(12): 200-205.

 

Wang B P, Han D, Wang Z N, et al. Precision manufacturing technology for slender and thin-walled engine metal shells \[J]. Forging & Stamping Technology, 2023, 47 (12): 200-205.

 

\[3]  熊运霞.工程机械用ZGMn13Cr2 高锰钢热处理工艺研究\[J]. 热加工工艺,2020,49(14):128-130.

 

Xiong Y X. Research on heat treatment process of ZGMn13Cr2 high manganese steel for construction machinery \[J]. Hot Working Technology, 2020,49 (14): 128-130.

 

\[4]  朱可,李强,曾建民,等.ZGMn13Cr2钢水韧处理中的脱碳行为\[J].金属热处理, 2021,38(4):205-209.

 

Zhu K, Li Q, Zeng J M, et al. Decarbonization behavior in toughness treatment of ZGMn13Cr2 steel \[J]. Heat Treatment of Metals, 2021, 38 (4): 205-209.

 

\[5]  刘瑞莉,王文焱,王文彬,等. 纳米SiC增强 ZGMn13Cr2 组织和性能\[J]. 河南科技大学学报(自然科学版),2014,35(5):6-8.

 

Liu R L, Wang W Y, Wang W B, et al. Nano SiC reinforced ZGMn13Cr2 microstructure and properties \[J].Journal of Henan University of Science and Technology(Natural Science Edition), 2014,35 (5): 6-8.

 

\[6]  GB/T 7314—2017,金属材料  室温压缩试验方法\[S].

 

GB/T 7314—2017, Metallic materials—Compression test method at room temperature\[S].

 

\[7]  HB 7571—1997,金属高温压缩试验方法\[S].

 

HB 7571—1997,Metal high temperature compression test method\[S].

 

\[8]  柳木桐, 钟平, 刘大博, 等.超高强度不锈钢热变形行为及加工图\[J].航空材料学报,2022, 42 (4):49-56.

 

Liu M T, Zhong P, Liu D B, et al. Hot deformation behavior and processing diagram of ultra-high strength stainless steel \[J]. Journal of Aerospace Materials, 2022, 42 (4): 49-56.

 

\[9]  宁静, 王敖, 苏杰, 等. 新型中合金超高强度钢的热变形行为\[J].锻压技术,2022,47 (12): 234-239. 

 

Ning J, Wang A, Su J, et al. Hot deformation behavior of new medium alloy ultra-high strength steel\[J]. Forging & Stamping Technology, 2022, 47 (12): 234-239.

 

\[10]张芳萍, 高毅, 和蕊芳,等. 316L/Q420双金属热变形行为及热加工图\[J].塑性工程学报,2023,30 (11):98-105.

 

Zhang F P, Gao Y, He R F, et al. Hot deformation behavior and hot working diagram of 316L/Q420 bimetallic \[J]. Journal of Plasticity Engineering, 2023, 30 (11): 98-105.

 

\[11]陈刚, 姚远超, 贾寓真, 等.30Cr4MoNiV 超高强度钢热变形本构方程的构建与优化\[J].材料导报,2022,36 (21):194-200.

 

Chen G, Yao Y C, Jia Y Z, et al. Construction and optimization of thermal deformation constitutive equations for 30Cr4MoNiV ultra-high strength steel \[J]. Materials Review, 2022, 36 (21): 194-200.

 

\[12]Song C N, Cao J G, Xiao J, et al. High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach\[J]. Materials Today Communications,2023,34: 105210.

 

\[13]毛欢,韩莹莹.基于应变补偿Arrhenius模型的TC20钛合金本构方程研究\[J].铸造技术,2018,39(9):1939-1942,1947.

 

Mao H, Han Y Y. Study on constitutive equations of TC20 titanium alloy based on strain compensation Arrhenius model \[J]. Casting Technology, 2018, 39 (9): 1939-1942,1947.

 

\[14]曹建国,王天聪,李洪波,等.基于Arrhenius改进模型的无取向电工钢高温变形本构关系\[J].机械工程学报,2016,52(4):90-96,102.

 

Cao J G, Wang T C, Li H B, et al. High temperature deformation constitutive relationship of non oriented electrical steel based on Arrhenius improved model \[J]. Journal of Mechanical Engineering, 2016,52 (4): 90-96,102.

 

\[15]周靖,王宝雨,徐伟力,等.耦合损伤的22MnB5热变形本构模型\[J].工程科学学报,2013,35(11):1450-1457.

 

 

Zhou J, Wang B Y, Xu W L, et al. A 22MnB5 thermal deformation constitutive model with coupled damage \[J]. Chinese Journal of Engineering, 2013,35 (11): 1450-1457.

 

\[16]傅垒,王宝雨,林建国,等.耦合位错密度的6111铝合金热变形本构模型\[J].工程科学学报,2013,35(10):1333-1339.

 

Fu L, Wang B Y, Lin J G, et al. A constitutive model for 6111 aluminum alloy hot deformation coupled with dislocation density \[J]. Chinese Journal of Engineering, 2013,35 (10): 1333-1339.


\[17]杨合,詹梅.材料加工过程实验建模方法\[M].西安:西北工业大学出版社,2008.

 

Yang H, Zhan M. Experimental Modeling Method for Material Processing Process \[M]. Xi′an:Northwestern Polytechnical University Press, 2008.

 

\[18]马世博, 孙立科, 张双杰, 等.多台阶电机轴镦挤复合成形工艺\[J]. 塑性工程学报, 2021, 28 (7): 29-35.

 

Ma S B, Sun L K, Zhang S J, et al. Multi step motor shaft upsetting extrusion composite forming process \[J]. Journal of Plasticity Engineering, 2021, 28 (7): 29-35.

 

\[19]刘乐, 殷银银, 金宏, 等.行星齿轮架中空多向锻造工艺及模具设计\[J].制造技术与机床,2022(6):140-146.

 

Liu L, Yin Y Y, Jin H, et al. Hollow multi-directional forging process and mold design for planetary gear frames \[J]. Manufacturing Technology & Machine Tool, 2022 (6): 140-146.

 

\[20]齐羿,薛喜云,焦斐, 等.盘式转向节锻造工艺优化与过程模拟分析\[J].锻压技术,2023,48(9):32-40.

 

Qi Y, Xue X Y, Jiao F, et al. Optimization of forging process and process simulation analysis for disc steering knuckles \[J]. Forging & Stamping Technology, 2023, 48 (9): 32-40.


 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com