Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Simulation and experimental study on interface healing behavior of 316 stainless steel construction forming under electric shock pretreatment
Authors: Yang Zhenyu1 2  Han Tian1 2 Deng Jiadong1 2 3 Qian Dongsheng2 3 
Unit: (1.School of Automotive Engineering Wuhan University of Technology  Wuhan 430070 China  2.Hubei Key Laboratory of Advanced Technology for Automotive Components  Wuhan University of Technology  Wuhan 430070 China  3.Hubei Engineering Research Center for Green Precision Material Forming Wuhan University of Technology Wuhan 430070 China) 
KeyWords: electric shock  current density  construction forming  interface healing 316 stainless steel 
ClassificationCode:TG306
year,vol(issue):pagenumber:2024,49(9):138-145
Abstract:

 In order to ensure the high-quality connection of construction interface, a method of adding electrical shock pretreatment on the basis of high-temperature deformation controling interface healing was proposed to promote the healing of construction interface. Then, by simulations and experiments on the electrical shock pretreatment before high-temperature deformation of 316 stainless steel, the influence of electrical shock pretreatment on the degree of construction interface healing was revealed. The research results show that increasing the current density during electrical shock pretreatment gradually improves the construction interface healing effect of formed sample. However, when selecting the current density for electrical shock pretreatment should not be excessively high. The key is to achieve a greater degree of temperature gradient change at the construction interface and generate thermal compressive stress towards the center, which could promote local pre-connection at the construction interface.

 
Funds:
基金项目:国家重点研发计划(2018YFA0702900);国家自然科学基金青年科学基金资助项目(51805391);高等学校学科创新引智计划(B17034):教育部创新团队发展计划(IRT_17R83);湖北省科技创新人才及服务专项(2022EJD012)
AuthorIntro:
作者简介:杨桢宇(2000-),男,硕士研究生 E-mail:491805611@qq.com 通信作者:邓加东(1988-),男,博士,副教授 E-mail:dengjd@whut.edu.com
Reference:

 \[1]  邓加东,韩天,杨桢宇,等. 电冲击处理对316不锈钢构筑成形的影响 \[J]. 塑性工程学报, 2023, 30 (6): 151-156.        


 

Deng J D, Han T, Yang Z Y, et al. Influence of electric shock treatment on constructive forming of 316 stainless steel\[J]. Journal of Plasticity Engineering, 2023,30(6): 151-156.

 

\[2]  孙明月,徐斌,谢碧君,等.大锻件均质化构筑成形研究进展\[J].科学通报,2020,65(27):3044-3058,3043. 

 

Sun M Y, Xu B, Xie B J, et al. Research advances on homogenization manufacturing of heavy components by metal additive forging\[J]. Chinese Science Bulletin, 2020, 65(27): 3044-3058,3043.

 

\[3]  Sun M, Xu B, Li D, et al. Constructing and forming method for preparing homogenized forge pieces\[P].China:EP3275585(A1),2018. 

 

\[4]  Xu B, Shao C, Sun M Y. Interface bonding of SA508-3 steel under deformation and high temperature diffusion\[A]. ESAFORM, Proceedings of the 21st International Esaform Conference on Material Forming:Esaform 2018\[C]. Palermo, Italy:AIP Publishing,2018.

 

\[5]  Zhou L Y, Feng S B, Sun M Y, et al. Interfacial microstructure evolution and bonding mechanisms of 14YWT alloys produced by hot compression bonding\[J]. Journal of Materials Science and Technology, 2019,35(8):1671-1680.

 

\[6]  Xie B J, Sun M Y, Xu B, et al. Evolution of interfacial characteristics and mechanical properties for 316LN stainless steel joints manufactured by hot-compression bonding\[J]. Journal of Materials Processing Technology, 2020, 283:116733.

 

\[7]  Zhao Y, Xie B J, Zhang J L, et al. Effects of surface roughness on interface bonding performance for 316H stainless steel in hot-compression bonding\[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 771-788.

 

\[8]  Zhang J Y, Xu B, Sun M Y, et al. Effect of strain rate on plastic deformation bonding behavior of Ni-based superalloys\[J]. Journal of Materials Science & Technology, 2020, 40: 54-63.

 

\[9]  Troitskii O A, Likhtman V I .The anisotropy of the action of electron and gamma radiation on the deformation of zinc single crystals in the brittle state\[J].Soviet Physics Doklady, 1963,8:91.

 

\[10]Zhou Y Y, Wang Z Q, Zha Z P, et al. Achieve high interfacial bonding strength of Ti/Al laminated composite at room temperature via electropulsing-assisted ultrasonic additive manufacturing\[J]. Metallurgical and Materials Transactions A, 2023, 54(2): 399-404.

 

\[11]Xu X H, Kang Q X, Liu Y K, et al. Recrystallization behavior of a hot-rolled TiBw/TA15 composite under electropulsing heat treatment\[J]. Journal of Materials Research and Technology, 2023, 26: 5762-5772.

 

\[12]Jiang Y B, Guan L, Tang G Y, et al. Influence of electropulsing treatment on microstructure and mechanical properties of cold-rolled Mg-9Al-1Zn alloy strip\[J]. Materials Science & Engineering A, 2011, 528(16-17):5627-5635.

 

\[13]Ku P H, Liang C L, Lin K L. Electromigration-assisted manipulation of microstructure and properties of metals via cyclic direct current stressing treatment\[J]. Materials Characterization, 2021, 174: 110980.

 

\[14]Wang F, Qian D S, Hua L, et al. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment \[J]. Sci. Rep., 2019, 9: 11315.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com