摘要:
|
利用Gleeble1500热模拟试验机对TB8合金进行等温压缩试验,获得不同变形条件下的流变应力数据,在对数据进行摩擦修正的基础上建立了3×10×1的3层BP神经网络形式的本构关系模型。结果表明,在隐层神经元数为10、学习率为0.05、动量因子为0.4时,网络模型具有优良的性能,能精确反映热变形条件下温度、变形速率、变形程度与流变应力之间的关系,为TB8合金热加工工艺的合理制定和热变形过程的数值模拟提供依据。
|
Isothermal compression tests on TB8 alloy were conducted using Gleeble 1500 thermomechanical test system and the flow stress values at deferent deforming condition were obtained.Based on the experiment data corrected for friction,the constitutive relationship model was constructed in the shape of 3×10×1BP artificial neural network.The results show that the artificial neural network models have excellent capability under the conditions that the number of nodes in the hidden layer is 10,the learning rate is 0.05 and the momentum factor is 0.4.It can describe the influences of the temperature,strain rate and true strain on the flow stress accurately,and also provide basis for determining hot forming process and numerical simulation.
|
基金项目:
|
|
作者简介:
|
|
参考文献:
|
[1]于冬梅.新型钛合金TB8的应用研究[J].飞机设计,2002,(2):57-65.
[2]钱九红.航空航天用新型钛合金的研究发展及应用[J].稀有金属,2004,24(3):219-222.
[3]熊爱明,陈胜晖,黄维超,等.TC6钛合金的高温变形行为及组织演变[J].稀有金属材料与工程,2003,32(6):447-450.
[4]Serajzadeh S,Taheri A K.Prediction of flow stress at hotworking condition[J].Mechanics Research Communications,2003,30(1):87-93.
[5]于翔.AZ61B镁合金热加工成形的数值模拟及组织预报[D].重庆:重庆大学,2004.
[6]王锋.TA15合金热变形组织和性能研究[D].合肥:合肥工业大学,2008.
[7]鲁世强,周细林,王克鲁,等.基于BP神经网络的2D70铝合金本构关系模型[J].锻压技术,2008,33(1):148-151.
[8]张彬,李东升,周贤宾.基于人工神经网络的拉形回弹预测技术研究[J].塑性工程学报,2003,10(2):28-31.
[9]洪志强.Ti-15-3合金高温本构模型的建立及在模拟中的应用[D].合肥:合肥工业大学,2007.
[10]张青.TB8合金热变形组织的分形研究及演变模拟[D].合肥:合肥工业大学,2008.
[11]李萍,段园培,张青,等.基于摩擦修正的TB8合金热压缩流变应力行为分析[J].稀有金属,2009,33(2):137-141.
[12]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
[13]Rao K R,Prased Y K.Neural network approach to flowstress evaluation in hot deformation[J].Mater.Proc.Tech.,1995,53:552-556.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|