网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
大塑性变形制备超细晶复合材料的研究进展
英文标题:Research progress of fabricating ultrafine-grained composites by severe plastic deformation
作者:郭炜 王渠东  
单位:上海交通大学轻合金精密成型国家工程研究中心 上海交通大学金属基复合材料国家重点实验室  
关键词:大塑性变形  超细晶  复合材料  力学性能 
分类号:TB33
出版年,卷(期):页码:2010,35(1):4-9
摘要:
介绍了等径角挤压(ECAP)、往复挤压(CEC)、高压扭转(HPT)和累积叠轧(ARB)4种技术的加工原理,系统阐述了大塑性变形(SPD)制备铝基、镁基、铜基超细晶(UFG)复合材料的研究进展,指出SPD技术是细化复合材料基体、均匀弥散增强相从而提高强度、硬度和塑性的有效手段,并展望了其研究范围将由有色金属基复合材料拓宽到铁基、陶瓷基、聚合物基等复合材料。
Processing principles were introduced according to four techniques as follows: equal channel angular pressing(ECAP),cyclic extrusion and compression(CEC),high pressure torsion(HPT) and accumulative roll-bonding(ARB).Research progresses of fabricating aluminum matrix,magnesium matrix and copper matrix ultrafine-grained(UFG) composites by severe plastic deformation(SPD) were systematically discussed.SPD techniques are effective means to refine matrix and homogenize reinforcing phase so as to increase strength,hardness and plasticity.Prospect was also proposed,i.e.,research scope would be widening from nonferrous metals matrix composites to iron matrix,ceramic matrix and polymer matrix composites.
基金项目:
国家自然科学基金资助项目(50674067);; 上海市基础研究重点项目(09JC1408200)
作者简介:
参考文献:
[1]Ye H Z,Liu X Y.Review of recent studies in magnesiummatrix composites[J].J.Mater.Sci.,2004,39(20):6153-6171.
[2]韩亚利,刘劲松,张福全.SiC颗粒增强铝基复合材料薄板轧制工艺研究[J].锻压技术,2008,33(5):64-66.
[3]杨剑,练友运,毛昌辉.热处理对粉末冶金法制备WP/2024Al复合材料力学性能的影响[J].稀有金属,2008,32(6):723-727.
[4]Valiev R Z,Islamgaliev R K,Alexandrov I V.Bulk nano-structured materials from severe plastic deformation[J].Prog.Mater.Sci.,2000,45(2):103-189.
[5]Valiev R Z,Langdon T G.Principles of equal-channel angu-lar pressing as a processing tool for grain refinement[J].Prog.Mater.Sci.,2006,51(7):881-981.
[6]Azushima A,Kopp R,Korhonen A,et al.Severe plasticdeformation(SPD)processes for metals[J].CIRP Ann.Manuf.Technol.,2008,57(2):716-735.
[7]Valiev R Z,Islamgaliev R K,Kuzmina N F.Strengtheningand grain refinement in an Al-6061 metal matrix compositethrough intense plastic straining[J].Scripta Mater.,1998,40(1):117-122.
[8]Sabirov I,Kolednik O,Valiev R Z,et al.Equal channel an-gular pressing of metal matrix composites:effect on particledistribution and fracture toughness[J].Acta.Materialia,2005,53(18):4919-4930.
[9]Munoz Morris M A,Gutierrez Urrutia I,Morris D G.Theeffect of geometrically necessary dislocations on grain refine-ment during severe plastic deformation and subsequent annea-ling of Al-7%Si[J].Mater.Sci.Eng.A,2008,493(1-2):141-147.
[10]Li Y,Langdon T G.Equal-channel angular pressing of anAl-6061 metal matrix composite[J].J.Mater.Sci.,2000,35(5):1201-1204.
[11]Chen L J,Ma C Y,Stoica G M,et al.Mechanical behaviorof a 6061 Al alloy and an Al2O3/6061 Al composite after e-qual-channel angular processing[J].Mater.Sci.Eng.A,2005,410-411:472-475.
[12]Han B Q,Langdon T G.Achieving enhanced tensile ductility inan Al-6061 composite processed by severe plastic deformation[J].Mater.Sci.Eng.A,2005,410-411:430-434.
[13]Munoz Morris M A,Calderon N,Gutierrez Urrutia I,et al.Matrix grain refinement in Al-TiAl composites by severe plas-tic deformation:Influence of particle size and processing route[J].Mater.Sci.Eng.A,2006,425(1-2):131-137.
[14]郭胜利,李德富,陈东,等.TiB2/Al复合材料高温拉伸材料常数的研究[J].锻压技术,2009,34(3):18-21.
[15]Ravi K R,Saravanan M,Pillai R M,et al.Equal channelangular pressing of Al-5 wt%TiB2in situ composite[J].J.Alloys Compd.,2008,459(1-2):239-243.
[16]Saravanan M,Pillai R M,Ravi K R,et al.Development ofultrafine grain aluminium-graphite metal matrix composite byequal channel angular pressing[J].Compos.Sci.Technol.,2007,67(6):1275-1279.
[17]Ma D Y,Wang J T,Xu K W.Equal channel angular press-ing of a SiCwreinforced aluminum-based composite[J].Ma-ter.Lett.,2002,56(6):999-1002.
[18]胡强,揭小平,闫洪,等.SiCP/AZ61镁基复合材料的力学与阻尼性能[J].锻压技术,2008,33(2):106-109.
[19]Hai C,Wang X J,Zheng M Y,et al.Effect of ECAP onthe microstructure and tensile property of SiCp/AZ91 magne-sium matrix composite[J].Key Eng.Mat.,2007,353-358(No.Pt 2):1342-1345.
[20]Wang Q D,Chen Y J,Zhang L J,et al.Microstructure andmechanical properties of AZ31-0.5%Si alloy processed byECAP[J].Trans.Nonferrous.Met.Soc.China,2006,16(Z3):1660-1663.
[21]Zheng M Y,Xu S W,Wu K,et al.Superplasticity of Mg-Zn-Y alloy containing quasicrystal phase processed by equalchannel angular pressing[J].Mater.Lett.,2007,61(22):4406-4408.
[22]Yeh J W,Yuang S Y,Peng C H.Microstructures and ten-sile properties of an Al-12wt pct Si alloy produced by recipro-cating extrusion[J].Metall.Mat.Trans.A,1999,30(9):2503-2512.
[23]Chu H S,Liu K S,Yeh J W.Aging behavior and tensileproperties of 6061Al-0.3μm Al2O3pparticle composites pro-duced by reciprocating extrusion[J].Scripta Mater.,2001,45(5):541-546.
[24]Chu H S,Liu K S,Yeh J W.An in situ composite of Al(graphite,Al4C3)produced by reciprocating extrusion[J].Mater.Sci.Eng.A,2000,277(1-2):25-32.
[25]宋佩维,井晓天,郭学锋.往复挤压Mg-4Al-2Si镁合金的组织细化与力学性能[J].中国有色金属学报,2007,17(1):111-117.
[26]贾树卓,郭学锋,徐春杰,等.往复挤压制备Mg2Si/Mg-A1复合材料组织及时效行为研究[J].兵器材料科学与工程,2007,30(5):44-47.
[27]Zhang Z M,Xu C J,Guo X F,et al.Reciprocating extru-sion of in situ Mg2Si reinforced Mg-Al based composite[J].Acta.Metal.Sin.,2008,21(3):169-177.
[28]Lee S W,Chen Y L,Wang H Y.On mechanical propertiesand superplasticity of Mg-15Al-1Zn alloys processed by recip-rocating extrusion[J].Mater.Sci.Eng.A,2007,464(1-2):76-84.
[29]Guo X F,Shechtman D.Reciprocating extrusion of rapidlysolidified Mg-6Zn-1Y-0.6Ce-0.6Zr alloy[J].J.Mater.Process Technol.,2007,187-188:640-644.
[30]Chen Y L,Yang C F,Yeh J W,et al.A novel process forfabricating electrical contact SnO2/Ag composites by recipro-cating extrusion[J].Metall.Mat.Trans.A,2005,36(9):2441-2447.
[31]Tokunaga T,Kaneko K,Sato K,et al.Microstructure andmechanical properties of aluminum-fullerene composite fabri-cated by high pressure torsion[J].Scripta Mater.,2008,58(9):735-738.
[32]Tokunaga T,Kaneko K,Horita Z.Production of aluminum-matrix carbon nanotube composite using high pressure torsion[J].Mater.Sci.Eng.A,2008,490(1-2):300-304.
[33]Mishra R S,Valiev R Z,Mcfadden S X,et al.Severe plas-tic deformation processing and high strain rate superplasticityin an aluminum matrix composite[J].Scripta Mater.,1999,40(10):1151-1155.
[34]Sabirov I,Kolednik O,Pippan R.Homogenization of metalmatrix composites by high-pressure torsion[J].Metall.Mat.Trans.A,2005,36(10):2861-2870.
[35]Sauvage X,Wetscher F,Pareige P.Mechanical alloying ofCu and Fe induced by severe plastic deformation of a Cu-Fecomposite[J].Acta.Mater.,2005,53(7):2127-2135.
[36]Sauvage X,Jessner P,Vurpillot F,et al.Nanostructureand properties of a Cu-Cr composite processed by severe plas-tic deformation[J].Scripta Mater.,2008,58(12):1125-1128.
[37]Islamgaliev R K,Buchgraber W,Kolobov Y R,et al.De-formation behavior of Cu-based nanocomposite processed bysevere plastic deformation[J].Mater.Sci.Eng.A,2001,319-321:872-876.
[38]Sabirov I,Pippan R.Formation of a W-25%Cu nanocompos-ite during high pressure torsion[J].Scripta Mater.,2005,52(12):1293-1298.
[39]Stolyarov V V,Zhu Y T,Lowe T C,et al.Processingnanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion[J].Mater.Sci.Eng.A,2000,282(1-2):78-85.
[40]张兵,袁守谦,吕爽,等.ARB工艺对1060工业纯铝组织和性能的影响[J].稀有金属,2008,32(2):135-139.
[41]Chen M C,Hsieh H C,Wu W.The evolution of microstruc-tures and mechanical properties during accumulative roll bond-ing of Al/Mg composite[J].J.Alloy Compd.,2006,416(1-2):169-172.
[42]Min G H,Lee J M,Kang S B,et al.Evolution of micro-structure for multilayered Al/Ni composites by accumulativeroll bonding process[J].Mater.Lett.,2006,60(27):3255-3259.
[43]Xu R C,Tang D,Ren X P,et al.Improvement of the ma-trix and the interface quality of a Cu/Al composite by theMARB process[J].Rare Met.,2007,26(3):230-235.
[44]Takata N,Ohtake Y,Kita K,et al.Increasing the ductilityof ultrafine-grained copper alloy by introducing fine precipi-tates[J].Scripta Mater.,2009,60(7):590-593.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9