摘要:
|
回转牵引式弯曲成形是一种高质量、高效率的管材弯曲成形方式,能够有效地防止起皱、管壁的过分减薄和截面的椭圆化等成形缺陷。以圆形钢管为研究对象,采用有限元软件DEFORM-3D对弯曲成形过程进行数值模拟,找出管壁最大减薄处所在的位置,并获得滚珠与管壁的间隙、滚珠角速度及压力模速度对弯管外侧壁厚变化的影响规律。结果表明,随着滚珠与管壁间隙的增大,管壁受滚珠的影响变小,即壁厚变化较小;随着滚珠角速度的增大,壁厚变化先减小后增大,当滚珠角速度与弯曲模角速度大小相同时,壁厚变化最小;随着压力模速度的增大,壁厚变化渐渐变小,当压力模速度为64.28 mm·s~(-1)时,壁厚变化最小。采用数值模拟后的优化参数在弯管机上进行试制,生产出合格件,模拟结果与实验结果基本吻合。
|
Rotary draw bending is an advanced forming process for manufacturing tubes with high quality and high effi- ciency.It can effectively prevent forming defects,such as wrinkles,wall thinning and cross-section distortion degrec~ Using simulation software DEFORM-3D,the tube bending process was simulated and the position of the most thin- nest wall thickness was found.The influence law of some process parameters on wall thickness was obtained through numerical simulation in tube bending.The parameters included the clearance between the tube and the mandrel and an- gular velocity of the mandrel and velocity of pressure die.The results indicate that the larger the clearance is,the smal- ler change of wall thickness is.With the increase of mandrel angular velocity,the change of tube wall thickness is smaller and then it becomes larger.When mandrel angular velocity is the same as the roller angular velocity,the wall thickness change is the smallest.With the increase of pressure die velocity,the change of wall thickness is smaller,the velocity is 64.28 mm·s~(-1),and the wall thickness change is the smallest.Using optimized parameter in numerical sim- ulation,workpieces were manufactured on bending machine with high quality without wrinkles.And the result is basi- cally consistent between numerical simulation and experiment.
|
基金项目:
|
河南省科技厅自然科学基金(0511050900)
|
作者简介:
|
|
参考文献:
|
[1]詹梅,杨合.数控弯管中芯棒对管壁厚减薄作用的有限元分析[J].机械科学与技术,2004,23(6):669-670.
[2]古涛,鄂大辛.管材弯曲壁厚变形的有限元模拟与试验分析[J].模具工业,2006,32(4):17-20.
[3]鄂大辛,高小伟.管材弯曲成形的有限元模拟与试验分析[J].锻压装备与制造技术,2006,(1):66-68.
[4]Li Heng,Yang He.Role of mandrel in NC precision bending process of thin-walled tube[J].International Journal of Ma- chine Tools & Manufacture,2007,(47):1164-1175.
[5]马爱军,周传月,王旭.等.patran和Nastran有限元分析[M].清华大学出版社,2005,(1):44-75.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|