摘要:
|
传统的冲压模具设计中,拉延筋设计和布置主要依靠经验,这使得模具设计和制造周期延长。以某汽车侧壁外板的拉深工序为例,讨论了神经网络技术与遗传算法在拉延筋优化设计中的综合应用问题。建立了反映板料成形参数与拉延筋阻力之间非线性映射关系的BP网络模型。利用该训练好的神经网络可以实现拉延筋的优化设计。由于相对于进行工艺试验来说数值仿真比较省时省力,因此,利用Dynaform模拟汽车侧壁外板的拉深成形过程,建立训练样本。在网络的训练方法上利用遗传算法进行了优化,有效地提高了神经网络的模拟精度。
|
In traditional process,the design and arrangement of drawbeads largely depend on experience,which makes the designing and manufacturing period of die set to be prolonged.The application of ANN and GA in drawbead optimized design was discussed.A neural network model based on car sidewall drawing was designed to simulate the nonlinear mapping relation between the drawbead force and sheet forming parameters.The drawbead optimized design could be realized by using the ANN.Because the finite element simulation costed less time than process test,the car sidewall drawing process with Dynaform was simulated and the training sample of ANN was created.The training method of the ANN was optimized in GA.It was helpful to improving the simulating degree of ANN.
|
基金项目:
|
广东省工业攻关计划项目(2004A11403002)
|
作者简介:
|
|
参考文献:
|
[1]Nine H D.New drawbead concepts for sheet metal forming[J].Journal of Applied Metalworking,1982,2(3):185-192.
[2]Nine H D.The applicability of coulomb's friction law to draw-beads in sheet metal forming[J].Journal of Applied Metal-working,1982,2(3):200-210.
[3]Wang N M,Shan V C.Drawbead design and performance[J].Journal of Material Shaping Technology,1991,9:21-26.
[4]Weidemann C.The blankholder action of drawbeads[A].Proceedings of 10thBiennial IDDRG Congress[C].UK:Uni-versity of Warwick,1978.
[5]潘江峰,钟约先,袁朝龙.基于遗传算法和神经网络技术的板料拉深成形参数优化[J].锻压技术,2006,31(6):44-47.
[6]韩利芬,高晖,李光耀,等.神经网络与遗传算法在拉延筋参数反求中的应用[J].机械工程学报,2005,41(5):171-173.
[7]林忠钦.车身覆盖件冲压成形仿真[M].北京:机械工业出版社,2004.
[8]Srinivas M,Patnaik L M.Genetic search:analysis using fit-ness moments[J].IEEE Transactions on Knowledge and Da-ta Engineering,1996,8(1):120-133.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|