网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Al-Cu-Mg(2519)合金高温变形本构关系的神经网络模型
英文标题:Neural network model for the constitutive relationship of the Al Cu Mg (2519 )aluminum alloy at elevated temperature
作者:林启权 彭大暑 朱远志 
单位:中南大学材料科学与工程学院 中南大学材料科学与工程学院 中南大学材料科学与工程学院 湖南长沙410083 湘潭大学机械工程学院 湖南湘潭411105  湖南长沙410083  湖南长沙410083 湖南大学材料科学与工程学院 湖南长沙410082 
关键词:2519铝合金  非线性关系  神经网络  模型 
分类号:TG306
出版年,卷(期):页码:2005,30(1):75-78
摘要:
   2519铝合金是一种新型的装甲材料。变形时, 各热力学参数之间存在着非常复杂的非线性关系。本文采用Gleeble 1500热模拟机上圆柱体轴对称高温压缩试验数据建立了该合金本构关系神经网络模型。利用所建立的网络模型对其他一些热力学状态下材料的流变应力进行了预测, 发现预测数据与实验数据吻合良好 (总拟合度为2 6%), 表明该本构关系神经网络模型有较高的预测精度。
The aluminum alloy of 2519 is a new material for armory useThere are very complex nonlinear relations among the thermal dynamical parameters in the process of deformingAn artificial neural network model for constitutive relationship is constructed with the compressing experimental data of cylinder specimens at elevated temperatures on the Gleeble 1500 thermal simulatorFlow stress of the material under various thermal dynamics conditions have been predicted by the network model, and the predicted data fit well with the experimental data (fitness is 26%)The results show that the artificial neural network model for constitutive relationship has higher predicted precision
基金项目:
湖南省教育厅划块项目 (03C485)
作者简介:
参考文献:
[1] Sonnino,CarloB,Ford, et al.Potentiometric and potentiostatic determination of the corrosion rate of welded2519 aluminumalloy[J ].ASTM SpecialTechnicalPublication,1991,(1134):132140.
[2] DevicentS M,DevletianJ H ,GedonS A.Weld properties ofthe newlydeveloped2519T87 aluminum armor alloy[J ].WeldingJournal,1988,67(7):3343.
[3] 航空航天材料咨询小组.航空航天材料咨询报告[M].北京:国防工业出版社,1999
[4] StanislawDymek,MarekDollar.TEM investigation of age hard enableAl2519 alloy subjected to stress corrosion cracking tests[J].MaterialsChemistry andPhysics,2003,81(2):286288.
[5] ChunM.S,BiglouJ,LenardJ G,KimJ G.Using neuralnetworks to predict parameters in the hot working of aluminumalloys[J].Journal ofMaterialsProcessingTechnology1998,86(1~3):245251.
[6] KorczakP,DyjaH,AbudaE.Using neural network modelsfor predicting mechanical properties after hot plate rollingprocesses[J ].Journal ofMaterialsProcessingTechnology1998,80-81:481486.
[7] 丰建朋,郭灵,张麦仓,等.人工神经网络在建立变形高温合金本构关系中的应用[J].中国机械工程,1999,(1):4951.
[8] 齐乐华,侯俊杰,杨方,等.金属液体凝固中直接挤压工艺的神经网络[J].中国有色金属学报,1999,(3):586589.
[9] 张兴全,彭颖红,阮雪榆.Ti17合金本构关系的人工神经网络模型[J].中国有色金属学报,1999,(3):590594.
[10] 柴天佑,谢书明,杜斌,等.基于RBF神经网络的转炉炼钢终点预报[J].中国有色金属学报,1999,(4):868872.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9