网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于加工图技术的铸态TB6钛合金锻造工艺优化
英文标题:Optimization of high-temperature alloy forging process of TB6 alloy casting by processing map
作者:余兴强 鲁世强 李鑫 欧阳德来 黄旭 雷力明 
单位:南昌航空大学材料科学与工程学院 北京航空材料研究院 
关键词:铸态TB6钛合金 Murty准则 变形机制 锻造工艺优化 
分类号:V252;TG146.2
出版年,卷(期):页码:2010,35(3):11-15
摘要:

在Thermecmaster-Z型热模拟实验机上对铸态TB6钛合金在800~1150 ℃、0.001~10 s-1变形参数范围内进行了等温恒应变速率压缩实验,根据实验数据采用基于Murty准则的加工图技术对该合金的锻造工艺进行了优化,并结合显微组织观察研究了该合金的变形机制。结果表明,在低温区的较佳变形参数为800~950 ℃、0.001~0.01 s-1,其变形机制为大晶粒超塑性;在高温区的较佳变形参数为1020~1080 ℃、0.001~0.006 s-1,其变形机制为动态再结晶。失稳区出现在800~890 ℃、0.01~10 s-1的低温区和975~1120 ℃、3.162~10 s-1的高温区域,在流变失稳区会出现晶界裂纹。

The isothermal and constant strain rate compression tests of TB6 alloy casting were conducted in the range of 800-1150 ℃ and 0.001-10 s-1 by Thermecmaster-Z simulator. According to the experimental data, the alloy forging process was optimized by means of processing map technology based on Murty criterion,and micro\|deformation mechanisms was investigated combined with microstructure observation. The results show that at low deformation temperature, the feasible deformation conditions are 800-950 ℃, 0.001-0.01 s-1 with the deformation mechanism of large grain superplasticity. The feasible deformation conditions at high deformation temperature are 1020-1080 ℃, 0.001-0.0056 s-1 with the deformation mechanism of dynamic recrystallization. The region of flow instability occurs in the area of low deformation temperature with 800-890 ℃, 0.01-10 s-1 and of high deformation temperature with 975-1120 ℃, 3.162-10 s-1. The grain boundary crack appears in the region of flow instability.

基金项目:
国家重点基础研究发展计划资助(2007CB613803);航空科学基金(2009ZE56014);江西省自然科学基金(2008GZC0041);江西省教育厅科技项目(GJJ08203);江西省研究生创新专项资金项目(YC08A085);南昌航空大学研究生科技创新基金资助项目(YC2007001)
作者简介:
参考文献:


[1]段传宝.国内外钛工业发展状况概述[J].上海钢研,2003,(1):39-42.
[2]鲍如强,黄旭,黄利军,等. Ti1023的变形机制及加工图[J]. 稀有金属材料与工程, 2005, 34(10):522-526.
[3]赵雪盈,郭鸿镇,姚泽坤,等.Ti1023合金超塑性压缩时的流动应力及显微组织[J].上海金属,2005,27(5):26-30.
[4]Prasad Y V R K, Gegel H L,Doraivelu S M,et al.Modeling of dynamic material behavior in hot deformation: forging of Ti6242[J]. Metalurgy Transaction A, 1984, 15A(10): 1883-1892.
[5]Prasad Y V R K. Authors reply: Dynamic materials model: Basis and principles[J]. Metallurgical and Materials Transactions A, 1996, 27A(1):235-247.
[6]Prasad Y V R K. Recent advances in the science of mechanical processing[J]. Indian Journal of Technology, 1990,4:435-451.
[7]Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural contral[J]. International Materials Reviews,1998, 43(6): 243-252.
[8]Prasad Y V R K, Sastry D H. Processing maps for hot working of a P/M iron aluminide alloy[J]. Intermetallics, 2000, 8: 1067-1074.
[9]Narayana Murty S V S, Nageswara Rao B. On the hot working characteristics of INCONEL alloy MA754 using processing maps[J]. Scandinavian Journal of Metallurgy, 2000, 29: 146-150.
[10]Narayana Murty S V S, Nageswara Rao B. On the hot working characteristics of 6061Al-SiC and 6061Al2O3 particulate reinforced metal matrix composites[J]. Composites Science and Technology, 2003, 63:119-135.
[11]Narayana Murty S V S, Nageswara Rao B. Development and validation of a processing map for AFNOR 7020 aluminium alloy[J].Materials Science and Technology, 2004, 20:772-782.
[12]Spigarelli S, Cerri E. An analysis of hot formability of the 6061+20%Al2O3 composite by means of different stability criteria[J]. Materials Science and Engineering A, 2002,A327:144-154.
[13]鲁世强,李鑫,王克鲁,等.基于动态材料模型的材料热加工工艺优化方法[J].中国有色金属学报,2007,17(6):890-896.
[14]鲍如强,黄旭,曹春晓,等.加工图在钛合金中的应用[J].材料导报,2004,18(7):26-29.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9