网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
影响高强铝合金锻件KIC值的材料及组织因素分析
英文标题:Effect of chemical composition and microstructure on KIC of high strength aluminum alloy forging
作者:彭富华 薛凤梅 李付国 李江 顾伟 
单位:成都飞机工业(集团)有限公司制造工程部 西北工业大学材料学院 
关键词:7050铝合金 锻件 断裂韧性 微区分析 
分类号:TG146.21
出版年,卷(期):页码:2010,35(5):121-126
摘要:

基于高强铝合金自由锻件的研究应用现状,通过对国产锻件的材料因素分析,讨论了高强铝合金国产锻件断裂韧性(KIC)影响规律的内在和外在因素,并结KIC合组织因素及微区成分分析,从影响国产7050锻件KIC的关键因素分析入手,即材料与冶炼因素的分析,来对断裂韧性指标进行综合性评价。研究表明:只有严格控制原材料生产,科学设计锻造和热处理工艺,并调整高强铝合金的强度与塑性指标,使其合理搭配才是提高高强铝合金国产锻件断裂韧性指标的最根本途径。针对国产材料,高强铝合金锻件应考虑维持现有的Cu含量水平下,调整增加Mg含量,同时建议增加Zn含量,并严格控制外来夹杂物的含量、大小和分布。

The effect laws of internal and external factors on fracture toughness (KIC) of high strength aluminum alloy localization forging were discussed through the chemical composition and microstructure analysis of localization forging, based on the research application status of high strength aluminum alloy free forging. The fracture toughness indexes were evaluated comprehensively from the analysis of major effect factors on KIC of localization 7050 forging, which were material and smelting factors, and combined with microstructure factors and micro\|area analysis. The reasonable approach to improve the fracture toughness indexes of high strength aluminum alloy localization forging is to strictly control the production of raw material, scientifically design the technology of forging and heat treatment, and regulate the strength and plasticity index of high strength aluminum alloy to make them collocate reasonably. The result shows that for localization forging, it should maintain the content of copper, add the content of magnesium and zinc, and strictly control the content, size and distribution of inclusions.

基金项目:
航空基础科学基金资助项目(03H53048)
作者简介:
参考文献:


[1]潘志军,黎文献.高强铝合金断裂韧性的研究现状及展望[J].材料导报,2002,16(7):14-17.
[2]Heinz A, Haszler A,Keidel C, et al. Recent development in aluminum alloys for aerospace applications[J]. Material Science Engineering A, 2000, 280(1): 102-107.
[3]Michael R Hill,Tina L Panontin. Micromechanical modeling of fracture initiation in 7050 aluminum[J].Engineering Fracture Mechanics, 2002, 69(18): 2163-2186.
[4]苏库德良绍夫,苏斯莫连采夫.铝合金断裂韧性[M].高云震,译.北京:冶金工业出版社,1980.
[5]Dumont D,Deschamps  A,Brechet  Y. On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy[J]. Materials Science and Engineering A, 2003, 356(12): 326-336.
[6]Hiroyuki Toda, Toshiro Kobayashi, Akihiro Takahashi. Mechanical analysis of toughness degradation due to premature fracture of course inclusions in wrought aluminium alloys [J]. Materials Science and Engineering A, 2000, 280(1): 69-75.
[7]Rabinovich M Kh. 细晶粒组织和超塑性变形对铝合金强度的影响[J].有色金属加工,1996,(6):47-58 . 
[8]Jian Haigen, Jiang Feng, Wen Kang, et al. Fatigue fracture of high-strength Al-Zn-Mg-Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1031-1036  .
[9]樊喜刚,蒋大鸣,单长智,等.Cu含量对Al-Zn-Mg-Cu合金的组织性能和断裂行为的影响[J].轻合金加工技术,2006,34(2):31-35.
[10]刘世兴,田世兴,陈昌麒.7050铝合金锻件的力学性能和断裂机制研究[J].材料工程,1996,(4):34-37.
[11]Fanyou Xie, Xinyan Yan, Ling Ding, et al. A study of microstructure and microsegregation of aluminum 7050 alloy [J]. Materials Science and Engineering A, 2003, 355(12): 144-153.
[12]许东.铝合金形变热处理工艺参数及其控制[J].热处理技术与装备,2007,28(2):44-46.
[13]钟皓,韩逸,陈琦,等.7150铝合金铸态组织中第二相的形貌及相组成[J].特种铸造及有色合金,2008,28(2):106-108.
[14]刘静,杨合,詹梅,等.铝合金管力学性能的拉伸试验研究[J].锻压技术,2010,35(2):113-116.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9