网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
NiTi形状记忆合金的本构关系及有限元模拟研究进展
英文标题:Research progress on constitutive models and finite element analysis of NiTi shape memory alloy
作者:曾攀 杜泓飞 
单位:清华大学 
关键词:NiTi形状记忆合金 本构关系 有限元 支架 管接头 
分类号:TB331
出版年,卷(期):页码:2011,36(1):1-6
摘要:

NiTi合金是目前记忆合金中研究最多和应用最广泛的一种,而描述NiTi形状记忆合金超弹性和记忆效应的本构模型及其有限元模拟技术是国内外研究的重点和难点。简要介绍了描述NiTi形状记忆合金超弹性的宏观唯象模型和细观力学模型这两种本构关系的研究进展。重点对近十年来NiTi记忆合金血管支架和管接头的有限元建模、分析及优化进行了评述。

NiTi alloy is one of the most widely used shape memory alloy. The research emphases and difficulties of NiTi shape memory alloy at home and abroad are the description of constitutive model for superelasticity and shape memory effect and its finite element modeling technology. The research progress on the macro-phenomenological and micromechanical constitutive model for superelasticity of NiTi shape memory alloy was generally reviewed. Specially, the finite element modeling, analysis and optimization of NiTi alloy stents and pipe connectors in the past decades were commented.

基金项目:
国家自然科学基金资助项目(10972114)
作者简介:
参考文献:


[1]  赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社,2002.
[2]  王心美,岳珠峰,王亚芳,等.NiTi合金的超弹性力学特性及其应用[M].北京:科学出版社,2009.
[3]  杨杰,吴月华.形状记忆合金及其应用[M].合肥:中国科学技术大学出版社,1993.
[4]  江树勇,郑玉峰,张艳秋.生物医用镍钛记忆合金管材塑性成形研究进展[J].锻压技术,2009,34(3):1-5.
[5]  张春才,苏佳灿.形状记忆材料[M].上海:第二军医大学出版社,2003.
[6]  Tanaka K. A thermomechanical sketch of shape memory effect:One-dimension tensile behavior[J].Res. Mechanica,1986(18):251-263.
[7]  Liang C,Rogers C A. One-dimension thermomechanical constitutive relation for shape memory alloy[J]. J. of Intell. Mater. Syst. and Struct.,1990,(1):207-234.
[8]  Brinson L C, Lammering R. Finite-element analysis of the behavior of shape-memory alloys and their applications[J]. International Journal of Solids and Structures,1993,30(23):3261-3280.
[9]  Auricchio F,Taylor R L. Shape-memory alloys: modeling and numerical simulations of the finite-strain superelastic behavior[J].Computer Methods in Applied Mechanics and Engineering,1997,143:175-194.
[10]  Auricchio F,Taylor R L,Lubliner J. Shape-memory alloys: Macromodelling and numerical simulations of the superelastic behavior[J].Computer Methods in Applied Mechanics and Engineering,1997,146: 281-312.
[11]  Auricchio F. Shape-memory alloys:applications,micromechanics,macromodelling and numerical simulations[D].Berkley:University of California at Berkley,1995.
[12]  Lazghab T. Modeling of shape memory alloys with plasticity[D].Miami:Florida Intenational University,2001.
[13]  Yan W Y,Wang C H,Zhang X P,et al. Theoretical Modeling of the effect of plasticity on reverse transformation in superelastic shape memory alloys[J].Material Science Engineering A,2003,354:146-156.
[14]  Savi, M A,Paiva, A. Phenomenological modeling and numerical simulation of shape memory alloys: A thermo-plastic-phase transformation coupled model[J].Journal of Intelligent Material Systems and Structures,2002,13:261-273.
[15]  Patoor E,Eberhardt A,Berveiller M. Micromechanical modelling of superelasticity in shape memory alloys[J]. Journal De Physique IV,1996,6(1):277-292.
[16]  Peultier B,Ben Zineb T,Patoor E, Macroscopic constitutive law of shape memory alloy thermomechanical behaviour:Application to structure computation by FEM[J]. Mechanics of Materials,2006(38):510-524.
[17]  Peultier B, Ben Zineb T, Patoor E, Macroscopic constitutive law for SMA: Application to structure analysis by FEM[J]. Materials Science and Engineering A,2006,438-440:454-458.
[18]  刘晓鹏.NiTi形状记忆合金的超弹性及医学应用研究[D].大连:大连理工大学,2007.
[19]  梁栋科.血管内支架的加工及其力学性能的分析与评价[D].大连:大连理工大学,2005:92-116.
[20]  Perry M D,Chang R T. Finite element analysis of Ni-Ti alloy stent deployment[A]. The Second International Conference on Shape Memory and Superelastic Technology[C]. Asilomar,CA:SMST Publication,1997.
[21]  徐强,刘玉岚,王彪,等.形状记忆合金心血管支架自扩张过程的数值模拟与支架的“最优化网格”[J].生物医学工程学,2008,(5):1101-1106.
[22]  Conti M. Finite element analysis of self-expanding braided wirestent[D].Universita Degli Studi Di Pavia & Ghent University,2007:63-78.
[23]  吴卫.人体血管支架有限元分析与结构拓扑优化[D].大连:大连理工大学,2007.
[24]  Auricchio F,Conti M,Morganti S. Shape memory alloy: From constitutive modeling to finite element analysis of stent deployment[J]. Computer Modeling in Engineering and Science,2010,57(3):225-243.
[25]  Whitcher F D.Simulations of in vivo loading condtions of nitinol vascular stent structures[J].Computers and Structures,1997,64(5-6):1005-1011.
[26]  Stolpmann J,Brauer H,Stracke H J,et al.Prascticability and limitations of finite element simulation of the dilation behavior of coronary stents[J].Materialwissenschaft and Werkstofftechnik,2003,34(8):736-745.
[27]  Perry M,Oktay S,Muskivitch J C. Finite element analysis and fatigue of stents[J]. Minimally Invasive Therapy & Allied Technologies,2002,11(4):165-171.
[28]  Zhi Y H, Wang X M, Gao Z Z,et al. Mechanical property analysis of Nitinol defective stent under uniaxial loading/unloading[J]. Materialwissenschaft and Werkstofftechnik,2008,39(7):479-485.
[29]  王磊,闫德胜,姜志民,等.Ni-Ti-Nb宽滞后形状记忆合金管接头研究和进展[J].材料科学,2004,(7):60-63.
[30]  王健,沈亚鹏.基于Total-Lagrange法SMA管接头的有限元分析[J].机械强度,2000,22(4):275-278.
[31]  Manach P Y, Favier D, Rio G. Finite element simulations of internal stresses generated during the ferroelastic deformation of NiTi bodies[J]. Journal De Physique IV,1996,6(C1):235-244.
[32]  Helm D, Numerical simulation of martensitic phase transitions in shape memory alloys using an improved integration algorithm[J]. International Journal for Numerical Methods in Engineering,2007,69(10):1997-2035.
[33]  智友海,刘永寿,岳珠峰.不同载荷下形状记忆合金管接头性能的有限元分析[J].机械设计与制造,2009,(2):4-6.
[34]  Okita K,Okabe N,Satoh T,et al. Analysis model for shape memory effect in Ti-Ni system alloy of ring configuration[J]. International Journal of Modern Physics B,2006,20(25-27):3951-3956.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9