[1]Kim Y W, Dimiduk Dennis M. Progress in the understanding of gamma titanium aluminides[J]. JOM, 1991, 43(8): 40-47.
[2]Kim Y W. Ordered intermetallic alloys, part Ⅲ: gamma titanium aluminide[J]. JOM, 1994, 46(7): 30-39.
[3]Clemens H, Kestler H, Eberhardt N, et al. Processing of gamma-TiAl based alloys on an industrial scale[A]. Kim Y W, Dimiduk Dennis M, Loretto Michael H. Gamma Titanium Aluminides[C]. Warrendale: TMS, 1999.
[4]Semiatin S L. Wrought processing of ingot-metallurgy gamma titanium aluminide alloys[A]. Kim Y W, Wagner R, Yamaguchi M. Gamma titanium aluminides[C]. Warrendale: TMS, 1995.
[5]Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallics[J]. Acta Metall. Mater., 2000, 48:307-322.
[6]Semiatin S L, Seetharaman V, Jain V K. Microstructure development during conventional and isothermal hot forging of a near-gamma titanium aluminide[J]. Metall. & Mater. Trans. A,1994, 25A(12):2753-2768.
[7]Fujiwara T, Nakamura A, Hosomi M, et al. Deformation of polysynthetically twinned crystals of TiAl with a nearly-stoichiometric composition[J]. Philosophical Magazine A, 1990, 61: 591-606.
[8]张永刚,韩雅芳,陈国良,等. 金属间化合物结构材料[M]. 北京:国防工业出版社,2003.
[9]Jiayong Si, Pengbiao Han, Ji Zhang. The design for the isothermal forging of Ti46.5Al2.5V1.0Cr0.3Ni alloy[J]. Journal of Iron and Steel Research, 2010, 17(8):67-73.
[10]Karhausen K, Kopper R. Model for integrated process and microstructure simulation in hot forming[J]. Steel Reasearch,1992, 63(6):247-271.
[11]Sellars C M. Thephysical metallurgy of hot working[A]. Sellars C M, Davies C J. Hot working and forming processes[C]. London: Metals Society,1980.
|