网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
加热速率对双相钢微观组织和烘烤硬化性能的影响
英文标题:Effect of heating rates on microstructure and bake hardening behavior of DP steel
作者:孙红云   孟庆格 徐德超 胡文彬 
单位:上海交通大学 
关键词:加热速率 双相钢 烘烤硬化性能 内耗 
分类号:
出版年,卷(期):页码:2014,39(4):115-121
摘要:

 应用自主开发的快速热处理实验设备对双相钢(0.1C-0.2Si-1.3Mn)进行了不同加热速率(5~350 ℃·s-1)的连续退火模拟实验,并利用扫描电镜、透射电镜和内耗仪等设备对微观组织和烘烤硬化性能(BH Behavior)及相关机理进行了分析讨论。实验发现,随着加热速率的提高晶粒尺寸可明显细化(8.5~3.9 μm),马氏体含量随加热速率的升高有增大的趋势,BH值随着加热速率的提高从62 MPa升高到 82 MPa。 分析可知,快速加热条件下BH值的升高的主要因素可能为:高加热速率所导致的较高的位错密度;较高马氏体含量在烘烤阶段所析出η-碳化物对位错的钉扎。

 The continuous annealing simulation of dual-phase (DP) steel (0.1C-0.2Si-1.3Mn) under different heating rates(5-350 ℃·s-1) was conducted using self-developed rapid heat treatment equipment. The effect of heating rate on microstructure and bake hardening behavior was investigated using SEM,TEM and internal friction instrument. It is found that the grain size is minimized,the volume fraction of martensite has increasing tendency with the heating rate increasing and the BH Value is improved from 62 to 82 MPa. Based on the analysis, the main factors for BH value improvement under faster heating state are higher dislocation density caused by higher heating rate and the pinning effect of epsilon carbide precipitated during baking stage when the rtensite volume is higher,and higher heating rate had a strong effect on BH value. 

基金项目:
十二五国家科技支撑计划项目(2011BAE13B01,2011BAE13B03)
作者简介:
孙红云(1989-),女,硕士研究生
参考文献:

[1]Chang P H. Temper-aging of continuously annealed low carbon dual phase steel[J]. Metallurgical Transactions A, 1984, 15(1): 73-86.


 

[2]Speich G R, Schwoeble A J, Huffman G P. Tempering of Mn and Mn-Si-V dual-phase steels[J]. Metallurgical Transactions A, 1983, 14(5): 1079-1087.

 

[3]Waterschoot T, De Cooman B C, De A K, et al. Static strain aging phenomena in cold-rolled dual-phase steels[J]. Metallurgical and Materials Transactions A, 2003, 34(3): 781-791.

 

[4]Timokhina I B, Hodgson P D, Pereloma E V. Transmission electron microscopy characterization of the bake-hardening behavior of transformation-induced plasticity and dual-phase steels[J]. Metallurgical and Materials Transactions A, 2007, 38(10): 2442-2454.

 

[5]Al-Shalfan W, Speer J G, Matlock D K, et al. Effect of annealing time on solute carbon in ultralow-carbon Ti-V and Ti-Nb steels[J]. Metallurgical and Materials Transactions A, 2006, 37(1): 207-216.

 

[6]De A K, De Blauwe K, Vandeputte S, et al. Effect of dislocation density on the low temperature aging behavior of an ultra low carbon bake hardening steel[J]. Journal of Alloys and Compounds, 2000, 310(1): 405-410.

 

[7]Berbenni S, Favier V, Lemoine X, et al. A micromechanical approach to model the bake hardening effect for low carbon steels[J]. Scripta Materialia, 2004, 51(4): 303-308.

 

[8]Wang H, Shi W, He Y L, et al. Variation of solute distributions during deformation and bake hardening process and their effect on bake hardening phenomenon in ultra-low carbon bake hardening steels[J]. Journal of Materials Science, 2011, 46(18): 5916-5924.

 

[9]Wang H, Shi W, He Y, et al. Effect of overaging on solute distributions and bake hardening phenomenon in bake hardening steels[J]. Journal of Iron and Steel Research, International, 2012, 19(1): 53-59.

 

[[10]武晋, 毕大森, 张建, 等. B180H1 钢板成形性能研究[J]. 锻压技术, 2008, 32(6): 64-67.

 

    Wu Jin, Bi Dasen, Zhang Jian. Research on the formability of steel sheet B180H1[J]. Forging & Stamping Technology,2008,32(6):64-67.

 

[11]Soenen B, De A K, Vandeputte S, et al. Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra low carbon bake hardening steels[J]. Acta materialia, 2004, 52(12): 3483-3492.

 

[12]De A K, Vandeputte S, De Cooman B C. Static strain aging behavior of ultra low carbon bake hardening steel[J]. Scripta materialia, 1999, 41(8): 831-837.

 

[13]De A K, Vandeputte S, De Cooman B C. Kinetics of low temperature precipitation in a ULC-bake hardening steel[J]. Scripta Materialia, 2001, 44(4): 695-700.

 

[14]Timokhina I B, Hodgson P D, Pereloma E V. Transmission electron microscopy characterization of the bake-hardening behavior of transformation-induced plasticity and dual-phase steels[J]. Metallurgical and Materials Transactions A, 2007, 38(10): 2442-2454.

 

[15]邝霜, 康永林, 于浩, 等. 冷轧双相钢连续退火组织的转变[J]. 钢铁, 2008, 42(11): 65-68.

 

    Kuang Shuang, Kang Yonglin,Yu Hao,et al.The microstructure tranformation of dual phase steel in continuous annealing[J]. Iron and Steel, 2008,42(11):65-68.

 

[16]胡赓祥. 材料科学基础[M]. 上海: 上海交通大学出版社,2006 .

 

    Hu Gengxiang. Fundamentals of Materials Science[M].Shanghai: Shanghai Jiao Tong University Press,2006 .

 

[17]Mohanty R R, Girina O A, Fonstein N M. Effect of heating rate on the austenite formation in low-carbon high-strength steels annealed in the intercritical region[J]. Metallurgical and Materials Transactions A, 2011, 42(12): 3680-3690.

 

[18] Huang J, Poole W J, Militzer M. Austenite formation during intercritical annealing[J]. Metallurgical and Materials Transactions A, 2004, 35(11): 3363-3375.

 

[19]田莳. 材料物理性能[M]. 北京: 北京航空航天大学出版社, 2008.

 

Tian Shi. Material Physics Properties[M].Beijing:Beihang University Press, 2008.

 

[20]葛庭燧. 固体内耗理论基础[M]: 北京:科学出版社, 2000.

 

Ge Tingsui.Fundamentals of Solid Internal Friction[M].Beijing:Science Press,2000.

 

[21]Wert C, Marx J. A new method for determining the heat of activation for relaxation processes[J]. Acta Metallurgica, 1953, 1(2): 113-115.

 

[22]Ono Y, Okuda K, Funakawa Y, et al. Effect of ferrite grain boundary on strain aging behavior in Nb-bearing ultra-low-carbon steel sheets[J].Materials Science Forum, 2012, 706: 2222-2227.

 

[23]邱成军. 材料物理性能[M]. 哈尔滨: 哈尔滨工业大学出版社, 2007.

 

Qiu Chengjun.Material Physics Properties[M].Harbin: Harbin Institute of Technology Press,2007.

 

[24]戢景文, 赵增祺, 贺礼端, 等. 铁磷合金中的 Snoek-KK ster 峰[J]. 物理学报, 1985,34(12): 1620-1626.

 

Qiang Jingwen, Zhao Zengqi, He Liduan. Snoek-k-k ster peak in Fe-P alloys[J]. Acta Physica Sinica,1985, 34(12): 1620-1626.

 

[25]Schoeck G. Friccion interna debido a la interaction entre dislocaciones y atomos solutos[J]. Acta Metallurgica, 1963, 11(6): 617-622.

 

[26]Hoyos J J, Ghilarducci A A, Salva H R, et al. Internal friction in martensitic carbon steels[J]. Materials Science and Engineering: A, 2009, 521: 347-350.

 

[27]Waterschoot T, Verbeken K, De Cooman B C. Tempering kinetics of the martensitic phase in DP steel[J]. ISIJ International, 2006, 46(1): 138-146.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9