网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
165 MN油压机回转工作台的应力分析
英文标题:Stress analysis of the rotating platform used in 165 MN hydraulic press
作者:张栋 李庆龄 于忠海 
单位:上海电机学院 
关键词:油压机  回转工作台  压应力  热应力  应力分析 
分类号:TB472
出版年,卷(期):页码:2014,39(8):72-75
摘要:
回转工作台是大型油压机最基本的冶金辅具,在锻压过程中主要承受工作压力和高温。以设计开发的回转工作台为对象,分析了回转工作台的受力情况。利用有限元分析方法,针对油压机转台3种不同工况时的压应力、热应力与变形进行了计算分析。计算分析结果表明,在165 MN工作压力作用下,转台的最大等效应力为192 MPa。参考有限元分析结论,研制了适用于165 MN油压机工况的回转工作台,转台材料选用铸钢ZG270-500,在165 MN工作压力和工件温度1200 ℃条件下已经安全稳定工作了800 h以上。实际应用证明设计的工作转台能够满足工作要求,适合在高温、大负荷条件下工作。
Rotating platform is the most basic metallurgical implement of large-scale hydraulic press, and it is mainly loaded working pressure and high temperature during forging. Taking the designed and developed rotating platform as an object, the stress conditions of rotating platform were analyzed. The compressive stress, thermal stress and deformation of rotating platform for hydraulic press were calculated and analyzed under three different working conditions by using finite element analysis. The calculation result indicates that the maximum equivalent stress value of rotating platform is equal to 192 MPa under the working pressure of 165 MN. Referring to the finite element analysis result, the rotating platform applicable for the work conditions of 165 MN hydraulic press was designed and made by using cast steel ZG270-500, which has safely and stably run for more than 800 hours under working pressure of 165 MN and workpiece temperature of 1200 ℃. The practical application shows that the designed rotating platform can meet the requirements for work, and it is applicable for the working condition of high temperature and heavy load.
 
基金项目:
上海市教育委员会上海高校知识服务平台建设项目(ZF1225)
作者简介:
张栋(1968-),男,博士,高级工程师
参考文献:


[1]李皓月,周田鹏,刘相新. ANSYS工程计算应用教程[M].北京:中国铁道出版社,2003. Li H Y,Zhou T P,Liu X X. Application of ANSYS Engineering Calculation[M].Beijing: Chinese Railway Publishing House, 2003.
[2]浦广益. ANSYS Workbench12基础教程与实例详解[M].北京:中国水利水电出版社,2010.Pu G Y. Workbench12 Foundation Tutorial and Examples of ANSYS[M].Beijing: Chinese Water Conservancy and Hydropower Press, 2010.
[3]关明,付赟秋,常志梁,等.大锻件锻造过程中温度场测定及其结果分析[J]. 锻压技术,2012,37(2):6-9.Guan M,Fu Y Q,Chang Z L, et al. Temperature field detection and result analysis of heavy forging during forging process [J]. Forging & Stamping Technology, 2012,37(5): 6-9.
[4]张涛,李孟光. 碟形封头旋压成形的数值模拟及工艺分析[J]. 锻压技术,2012, 37(5):67-69.Zhang T,Li M G. Numerical simulation and process analysis of dished heads by spinning [J]. Forging & Stamping Technology, 2012,37(5):67-69.
[5]魏征宇,杨文一, 郭玉玺. 180 t锻件升降回转台[J]. 锻压技术,2011, 36(1):88-89.Wei Z Y,Yang W Y,Guo Y X. 180 t forging lifting rotary table [J]. Forging & Stamping Technology, 2011, 36(1):88-89.
[6]胡福生,王宝雨,胡正寰.  凸轮轴楔横轧成形仿真与应力应变分析[J]. 锻压技术,2009, 34(1):65-68.Hu F S,Wang B Y,Hu Z H. Numerical shaping simulation and stress-strain analysis of cam shaft cross wedge rolling [J]. Forging & Stamping Technology, 2009, 34(1):65-68.
[7]吴丽平,刘建雄,刘新胜,等. 基于塑性变形有限元模拟的模具结构优化[J]. 锻压技术,2006,31(2):55-57.Wu L P,Liu J X,Liu X S, et al. Optimizing die structure based on the plastic forming FEM simulation [J]. Forging & Stamping Technology, 2006, 31(2):55-57.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9