网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
冷镦机床身热力分析与结构优化
英文标题:Thermo-mechanical analysis and structure optimization for cold heading machine bed
作者:何彬 李响 
单位:湖北理工学院 三峡大学 
关键词:冷镦机  床身结构  热力耦合 拓扑优化 
分类号:TG305;TH122
出版年,卷(期):页码:2014,39(9):92-96
摘要:

冷镦机床身的轻量化是锻压机床绿色设计和制造的必然趋势。针对冷镦机床身热固耦合的结构特点,分析了床身工作时温度场、热应力和热力耦合特性;考虑到热力耦合作用下冷镦机床身结构优化过程的复杂性,提出了通过床身热分析、拓扑优化与再设计环节的有效集成来解决热力耦合作用下冷镦机床身结构优化的建模和计算过程的简化方法,建立了冷镦机床身结构优化的一般流程;并以某型号冷镦机床身为例,基于Abaqus 6.11有限元分析软件,实现了床身的热分析、拓扑优化、再设计以及方案选优的整体结构优化过程;优化结果显示该型号冷镦机床身在体积减少了9.52%的同时其综合热力学性能也得到了较大程度的改善,从而验证了所提出方法和过程的有效性。
 

It is an inevitable trend on the green design and manufacturing of forging machine tool to light the weight of heading machine bed.  According to the structure characteristic of the thermo-solid coupling of cold heading machine bed, the features of temperature field, thermal stress and thermo-mechanical coupling in operation were analyzed. Considering the complexity of structure optimization process of the bed under thermo-mechanical coupling, a simplified method of modeling and calculating the process of structure optimization under thermo-mechanical coupling was put forward through the integration of thermal analysis, topology optimization and redesign for cold heading machine bed, and a general procedure of structure optimization was constructed accordingly. For a certain type of cold heading machine bed as an example, the processes of overall structure optimization including thermal analysis, topology optimization, redesign and optimal scheme selection were realized by finite element software Abaqus 6.11. The optimal result shows that the thermodynamic property of the bed is improved remarkably while its weight is reduced by 9.52%, which testifies the effectiveness of the proposed method and process.
 

基金项目:
国家自然科学基金资助项目(51305232);湖北省自然科学基金资助项目(2012FFC016)
作者简介:
何彬(1970-),男,博士,副教授
参考文献:


[1]张祖芳, 仲太生, 许超. 开式压力机床身轻量化设计研究[J]. 锻压装备与制造技术, 2003, 38(3):26- 28.Zhang Z F, Zhong T S, Xu C. Lightening design research of openback press frame[J]. China Metalforming Equipment & Manufacturing Technology, 2003,38(3):26-28.
[2]徐高春. 面向环保的高速全自动冷墩机优化研究与系统实现[D]. 上海:上海大学,2011.Xu G C. Optimication Research and System Implementation for High Speed Automatic Cold Heading Machine to Environment Protection[D]. Shanghai: Shanghai University, 2011.
[3]He Bin. Multi-constraint topology optimization of forging machine bed for light weight design [J]. International Journal of Advancements in Computing Technology, 2013, 9 (5):94-103.
[4]李冬梅,张宪民,王念峰,等. 基于可靠性约束的热固耦合结构拓扑优化[J]. 华南理工大学学报:自然科学版,2011,39(6):42-47.Li D M, Zhang X M, Wang N F, et al. Topology optimization of thermo-mechanical coupling structures based on reliability constraint[J]. Journal of South China University of Technology:Natural Science Edition, 2011, 39(6): 42-47.
[5]左孔天,钱勤,赵雨东,等. 热固耦合结构的拓扑优化设计研究[J]. 固体力学学报,2005,26(4):447-452.Zuo K T, Qian Q, Zhao Y D, et al. Research on the topology optimization about thermo-structural coupling field[J]. Chinese Journal of Solid Mechanics, 2005, 26(4): 447-452.
[6]李开标. 热、力耦合作用下轻结构的多目标拓扑优化方法[D].哈尔滨:哈尔滨工业大学,2006.Li K B. A Multi-objective Topology Optimization Method for Light .Structure Under Coupled Thermal-mechanical Loads[D]. Haerbin: Harbin Institute of Technology, 2006.
[7]刘江林,曾卫东,吴欢,等. TA2棒材斜轧穿孔过程三维热力耦合有限元分析[J]. 锻压技术,2012,37(3):59-62.Liu J L, Zeng W D, Wu H, et al. 3D thermo-mechanical coupling finite element analysis of piercing process for TA2 bar billet[J]. Forging & Stamping Technology, 2012, 37(3): 59-62.
[8]Hansen G, Bendsoe M P, Sigmund O. Topology optimization of heat conduction problems using the finite volume method[J] . Structural and Multidisciplinary Optimization, 2006, 31 (4): 251-259.
[9]He Bin. Research on the method of topology optimization under thermo-mechanical coupling for forging machine bed[J]. International Journal of Digital Content Technology and its Applications, 2013, 7(10):18-26.
[10]Ramya Menon C, Vinod Pangracious. Thermal analysis & optimization of a 3 dimensional heterogeneous structure[J]. International Journal of Computer Science & Engineering, 2012, 2(1):7-15.
[11]陶鑫. 铸造凝固过程温度场与应力场有限元数值模拟[D]. 昆明:昆明理工大学,2009.Tao X. Numerical Modeling on the temperature Field and Heat Stress Field in the Process of Foundry Freezing[D]. Kunming: Kunming University of Science & Technology, 2009.
[12]潘涛,杨志刚,白秉哲,等. 钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究[J]. 金属学报,2003,39(10):1037-1042.Pan T, Yang Z G, Bai B Z, et al. Study of thermal stress and strain energy inγ-fe matrix around inclusion caused by thermal coefficient difference[J]. Acta Metallurgica Sinica,2003,39(10):1037-1042.
[13]Rocha Lao, Lorente S Bejan A. Constructal design for cooling a disc-shaped area by conduction[J]. International Journal of Heat and MsaaTransfer, 2002, 45(8):1643-1652.
[14]杨军刚,张卫红,王丹,等. 热力耦合结构的弹性支撑分析与拓扑优化设计[J]. 力学学报,2012,44(3):537-545.Yang J G, Zhang W H, Wang D, et al. Analysis and topology optimization of elastic supports for structures under thermo-mechanical loads[J].Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 537-545.
[15]李冬梅. 多场耦合及多相材料的柔顺机构拓扑优化研究[D]. 广州:华南理工大学,2011.Li D M. Topology Optimization of Compliant Mechanisms with Multiphysics Fields Coupling and Multiphase Materials[D]. Guangzhou: South China University of Technology, 2011.
[16]张晖,刘书田,张雄. 拓扑相关热载荷作用下稳态热传导结构拓扑优化[J]. 中国机械工程,2009,20(11):1339-1343.Zhang H, Liu S T, Zhang X. Topology optimization of steady-state heat conduction problems with design-dependent heat loads[J]. China Mechanical Engineering, 2009, 20(11):1339-1343.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9