网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
大直径无缝钢管挤压缩口成形工艺研究
英文标题:Research on necking extrusion forming process for seamless steel tube with large diameter
作者:郭永强 徐春国 任伟伟 陈钰金 张亚 
单位:北京机电研究所 
关键词:大直径无缝钢管 挤压成形 缩口系数 温度梯度 
分类号:TG335
出版年,卷(期):页码:2014,39(12):53-57
摘要:

针对大直径无缝钢管挤压缩口成形中的各项工艺参数变化规律以及如何提高管材缩口变形程度进行了研究。运用有限元模拟软件Deform-3D分析了半锥角、加热温度、成形速度、摩擦因子和极限缩口等工艺参数之间的关系,并对其进行了优化;在理论分析基础上提出采用温度梯度法的局部加热方式可以提高管材缩口变形程度,并对温度梯度值进行优化分析。分析结果表明,管材极限缩口系数mmin与半锥角α及摩擦条件有关,最佳挤压半锥角α为23°;采用温度梯度的局部加热方式可以大大提高管材的缩口能力。实验结果表明:缩比实验(样件尺寸1∶0.6)中均匀温度场下管材缩口系数m的实验结果与数值分析结果一致;挤压缩口成形实验(样件尺寸1∶1)中,当采用温度梯度值k为1.67时,管材缩口系数m能达到0.67左右,缩口变形程度提高15%左右。
 

For necking extrusion forming process of seamless steel tube with large diameter, variation of process parameters and method to improve the deformation extent of necking were studied. The relationship between process parameters such as semi-cone angle, heating temperature, forming velocity, friction coefficient and limited necking coefficient was analyzed and optimized by finite element simulation software Deform-3D. Based on theoretical study, the method of localized heating with a temperature gradient was put forwarded to effectively increase the deformation extent of necking, and the values of temperature gradient were optimized. The analysis results show that limited necking coefficient mmin is relative to the semi cone angle α and the friction condition, and at the same time the best semi-cone angle is about 23°. The localized heating with a temperature gradient can increase the necking extrusion remarkably. The experimental results show that scaling ratio (size,1∶0.6) experimental result of necking coefficient m under uniform temperature field is coincident with the simulation result. In the necking extrusion forming experiment (size,1∶1), the necking coefficient m reaches about 0.67 and the necking deformation extent increases about by 15% when the temperature gradient value is 1.67.

基金项目:
国家高技术研究发展计划资助项目(2012AA040202)
作者简介:
郭永强(1984-),男,博士研究生
参考文献:

[1]中国机械工程学会.中国机械工程技术路线图[M].北京:中国科学技术出版社,2011.

Chinese Mechanical Engineering Society. Technology Roadmaps of Chinese Mechanical Engineering[M]. Beijing:Chinese Science and Technology Press,2011.

[2]王忠堂,栾瑰馥.管材无模镦粗壁厚变化实验研究[J]. 热加工工艺,1999,18(3):11-12.

Wang Z T, Luan G F. Experiment study on variation of wall thickness during tube dieless upsetting[J]. Hot Working Process,1999,8(3):11-12.

[3]李连诗,韩观昌,邢维基.管材塑性变形原理(下册) [M].北京:冶金工业出版社,1989.

Li L S, Han G C, Xing W J. Tube Plastic Deformation Principle (II)[M]. Beijing: Metallurgical Industry Press,1989.

[4]谢建新,刘静安.金属挤压理论与技术[M].北京:冶金工业出版社,2001.

Xie J X,Liu J A. Theory and Technology of Metal Extrusion[M]. Beijing, Metallurgical Industry Press,2001.

[5]郭胜利,白朴存,张秀云,等. 采用功平衡法求解管材挤压变形力的对比研究[J].锻压技术,2006,31(5):55-59.

Guo S L, Bai P C, Zhang X Y, et al. Contrastive research of tube extrusion force deduced by the balanced work method[J]. Forging & Stamping Technology, 2006,31(5):55-59.

[6]任广升,胡亚民,付传锋. 模具型腔挤压成形技术[M]. 北京:机械工业出版社,2009.

Ren G S, Hu Y M, Fu C F. The Extrusion Technology of die Cavity[M]. Beijing: China Machine Press,2009.

[7]王同海.管材塑性加工技术[M].北京:机械工业出版社,1997.

Wang T H. Tube Plastic Forming Technology[M]. Beijing: China Machine Press,1997.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9