网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻造温度对TC21钛合金锻板组织和力学性能的影响
英文标题:Influence of forging temperature on structure and mechanical
作者:史小云 张晓园 毛友川 王晓亮 刘广发 
单位:西部超导材料科技股份有限公司 
关键词:TC21钛合金 锻造温度 室温抗拉强度 室温屈服强度 显微组织 
分类号:
出版年,卷(期):页码:2015,40(1):14-16
摘要:

研究锻造温度对TC21钛合金锻板组织和力学性能的影响。试验选用3件规格为Φ300 mm×400 mm的TC21棒料,经制坯完成后进行锻造。采用相同锻造变形量,锻造温度分别为Tβ+15 ℃、Tβ+30 ℃、Tβ+45 ℃,进行显微组织观察和室温拉伸试验分析。试验结果表明,TC21锻板在相变点以上变形时,随着锻造温度升高,试样短横向、长横向和纵向室温抗拉强度Rm和室温屈服强度Rp0.2升高。由于锻造温度在相变点以上,所以3块锻板的低倍呈清晰晶,且随着锻造温度的升高,清晰度增加,晶粒增大。同时,3块锻板的显微组织为网篮组织,由多个平直的束状α相互相交错排列形成,随着锻造温度升高,α相排列方向一致性增强,长条α相含量增加,α相厚度和长度增加。

The influence of forging temperature on microstructure and mechanical property of TC21 alloy plate was investigated. Three TC21 alloy bars with a specification of Φ300 mm×400 mm were prepared for the forging test. The microstructure was observed and room temperature tensile test was analyzed under the forging temperatures of Tβ+15℃, Tβ+30℃ and Tβ+45℃ respectively based on the same forging deformation. The results show that room temperature tensile strength Rm and room temperature yield strength Rp0.2 on short transversal, long transversal and longitudinal direction increase with the rise of forging temperature when TC21 forging plate deforms above transformation temperature. Because forging temperature was above the transformation temperature, the macrocopic structure of three plates is clear grain, and grain grows clearer and larger with rising forging temperature. The microcopic structure of three plates is basketwave structure which is formed by much stagger flat beam α phase. α phase orientation grows more consistent, strip α phase is increased, and the thickness and length of α phase are increased with the rise of forging temperature

基金项目:
作者简介:
史小云(1975-),女,硕士,高级工程师
参考文献:


[1]马少俊, 吴学仁, 刘建中,等. TC21钛合金的微观组织对力学性能的影响[J]. 航空材料学报, 2006, 26(5): 22-25.


Ma S J,Wu X R,Liu J Z,et al. Influence of microstructures on mechanical Properties for TC21 titanium alloy [J]. Journal of Aeronautical Materials,2006, 26(5): 22-25.



[2] 张利军, 田军强, 周中波, 等. 热处理制度对TC21钛合金锻件组织及力学性能的影响[J]. 中国材料进展, 2009, 28(9-10): 84-87.


Zhang L J, Tian J Q, Zhou Z B, et al. Effects of heat treatment on microstructures and mechanical performances of TC21 titanium alloy forgings[J]. Materials China, 2009, 28(9-10): 84-87.



[3]Lütjering G. Influence of processing on microstructure and mechanical properties of (< i> α+ β</i>) titanium alloys[J]. Materials Science and Engineering: A, 1998, 243(1): 32-45.



[4]Peters J O, Lütjering G, Koren M, et al. Processing, microstructure, and properties of β -CEZ[J]. Materials Science and Engineering A, 1996, 213(1): 71-80.



[5]Campbell J E, Underwood J H, Gerberich W W. 断裂力学在选材方面的应用 [M]. 北京:冶金工业出版社, 1992.


Campbell J E, Underwood J H, Gerberich W W. Application of Fracture Mechanics to the Material Aspects[M]. Beijing: Metallurgical Industry Press, 1992.



[6]Sauer C, Luetjering G. Thermo-mechanical processing of high strength β-titanium alloys and effects on microstructure and properties[J]. Journal of Materials Processing Technology, 2001, 117(3): 311-317.



[7]马济民, 贺金宇, 庞克昌, 等. 钛铸锭和锻造 [M]. 北京:冶金工业出版社,2012.


Ma J M, He J Y, Pang K C, et al. Titanium Ingot Casting and Forging[M]. Beijing: Metallurgical Industry Press, 2012.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9