网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Cr20Ni80电热合金高温压缩过程中的组织演变
英文标题:Microstructure evolution of Cr20Ni80 electrothermal alloy in
作者:李亚敏 龚乃国 
单位:兰州理工大学 
关键词:Cr20Ni80电热合金 高温压缩 真应力-真应变曲线 组织演变 
分类号:
出版年,卷(期):页码:2015,40(1):119-124
摘要:

为了研究电热合金Cr20Ni80在热变形过程中的组织演变规律,在Gleeble-1500D热模拟试验机上对该合金进行了高温压缩试验,并绘制了变形温度为900~1220 ℃、应变速率为0.001~10 s-1条件下合金的真应力-真应变曲线,同时对热变形后的金相组织进行了分析。结果表明:在相同的温度下,流变应力与变形速率正相关;在相同的速率下,流变应力与变形温度反相关;Cr20Ni80合金在高温变形过程中,与应变速率相比其组织演变过程对温度更为敏感。在较高的温度下及低应变速率下,原子有充足的时间和足够的能量进行扩散,利于组织的演变,且能够改善合金内部因锻造而产生的流线分布。

In order to study the microstructure evolution of Cr20Ni80 electrothermal alloy in hot compression process, the high temperature compression tests were carried out by Gleeble-1500D thermal simulation machine, and the true stress-true strain curves were gained under the temperature range of 900-1220 ℃ and the strain rates of 0.001-10 s-1, and finally the microstructure of alloy after hot deformation was analyzed. The results show that the flow stress and strain rate at the same temperature are in positive relation, but the flow stress and deformation temperature under the same rate are in inverse relation. The microstructure evolution of Cr20Ni80 is more sensitive to temperature than strain rate in the process of high temperature deformation. With high temperature and low strain rate, the atom has enough time and energy to spread, which benefits the microstructure evolution and improves the flow line distribution in alloy caused by forging.

基金项目:
甘肃省自然科学基金资助项目(1112RJZA030)
作者简介:
李亚敏(1973-),女,博士,副教授
参考文献:


[1]胡春霞,王晓军,王传玉,等. 国内Cr20Ni80电热合金组织及性能对比研究[J]. 金属功能材料,2010,17(3): 42-46.Hu C X, Wang X J,Wang C Y,et al. Contrast and analysis of microstructure and properties of Cr20Ni80 electrical heating alloy in China[J]. Metallic Functional Materials, 2010,17(3): 42-46.


[2]章应,朱强军,徐永红,等. Ni80Cr20电热合金丝在钛业应用中的失效分析及改善措施[J]. 电工材料,2010,(4):35-38.Zhang Y, Zhu Q J, Xu Y H, et al. Failure analysis of Ni80Cr20 electrothermal alloy wire used in Ti industry and improvement measures[J]. Electrical Engineering Materials, 2010,(4):35-38.


[3]王艳,王明家,蔡大勇,等. 高强度奥氏体不锈钢的热变形行为及其热加工图[J]. 材料热处理学报,2005,26(4): 65-68.Wang Y, Wang M J, Cai D Y, et al. Hot deformation behavior and processing map of high strength austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2005,26(4): 65-68.


[4]岗特·斐卓,李新立. 金相侵蚀手册[M]. 北京:科学普及出版社,1982.Gunter Petzow, Li X L. Metallographic Erosion Manual[M]. Beijing: Popular Science Press, 1982.


[5]王园园,陈拂晓,陈学文. 70Cr3Mo钢热变形行为及加工图[J]. 锻压技术,2014,39(3):117-121.Wang Y Y,Chen F X,Chen X W. Hot deformation behavior and processing map of 70Cr3Mo steel [J]. Forging & Stamping Technology,2014,39(3):117-121.


[6]宁永权,姚泽坤,岳太文,等. FGH4096合金“项链”组织研究[J]. 稀有金属材料与工程,2009,38(10): 1783-1786.Ning Y Q, Yao Z K, Yue T W, et al. Link microstructure of FGH4096 alloy[J]. Rare Metal Materials and Engineering, 2009,38(10): 1783-1786.


[7]Shi B Q, Chen R S, Ke W. Effects of processing route on texture and mechanical properties of WZ62 alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(4):830-835.


[8]Zhou J, Zhang J B, Ji G S, et al. Hot deformation behavior of 409L ferritic stainless steel[J]. Transactions of Materials and Heat Treatment, 2010,31(9): 50-54.


[9]吴伏家,尹晓霞,赵长瑞. TC4钛合金等温锻造过程的数值模拟和实验研究[J]. 锻压技术,2009,34(5):147-150.Wu F J, Yin X X, Zhao C R. Numerical simulation and experiment of isothermal forgings process of TC4 titanium alloy[J]. Forging & Stamping Technology, 2009,34(5):147-150.


[10]冯朝辉,张显峰,孙刚,等. TC4钛合金全髋关节机械压力机恒载荷精密模锻技术[J]. 锻压装备与制造技术,2006,41(2):39-41.Feng C H, Zhang X F, Sun G, et al. Precision die forging technology for mechanic press machine of TC4 titanium alloy entire hip join under constant load[J]. China Metalforming Equipment & Manufacturing Technology, 2006,41(2):39-41.


[11]杜彬, 李德富, 郭胜利, 等. Hastelloy C-276镍基合金的热压缩变形行为[J].稀有金属, 2013, 37(2): 215-223.Du B, Li D F, Guo S L, et al. Hot compressive deformation behaviors of nickel base alloy hastelloy C-276[J].Chinese Journal of Rare Metals, 2013,36(2): 215-223.


[12]关绍臣,孙军,林栋. 曲轴模锻件分模面裂纹的分析与预防[J]. 内燃机与动力装置,2008,(2): 50-52.Guan S C, Sun j, Lin D. Analysis and prevention of split line on die forging crankshaft[J]. Internal Combustion Engine & Powerplant, 2008,(2): 50-52.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9